Discovered by crystallographer Barbara Low in 1952[1] and once thought to be rare, short π-helices are found in 15% of known protein structures and are believed to be an evolutionary adaptation derived by the insertion of a single amino acid into an α-helix.
The majority of π-helices are only 7 residues in length and do adopt regularly repeating (φ, ψ) dihedral angles throughout the entire structure like that of α-helices or β-sheets.
A long left-handed π-helix is unlikely to be observed in proteins because, among the naturally occurring amino acids, only glycine is likely to adopt positive φ dihedral angles such as 55°.
This mis-characterization results from the fact that naturally occurring π-helices are typically short in length (7 to 10 residues) and are almost always associated with (i.e. flanked by) α-helices on either end.
Such helical bulges have previously been referred to as α-aneurisms, α-bulges, π-bulges, wide-turns, looping outs and π-turns, but in fact are π-helices as determined by their repeating i + 5 → i hydrogen bonds.
[2] One of the most notable group of proteins whose functional diversification appears to have been heavily influenced by such an evolutionary mechanism is the ferritin-like superfamily, which includes ferritins, bacterioferritins, rubrerythrins, class I ribonucleotide reductases and soluble methane monooxygenases.