Atromentin possesses in vitro antibacterial activity, inhibiting the enzyme enoyl-acyl carrier protein reductase (essential for the biosynthesis of fatty acids) in the bacteria Streptococcus pneumoniae.
These enzymes were first characterized in Tapinella panuoides by overexpressing the respective genes (AtrA and AtrD) in E. coli and incubating the holo-enzyme with 4-HPP to observe the formation of atromentin.
[14] The nonribosomal peptide synthetase-like enzyme (atromentin synthetase) that symmetrically condenses two monomers of 4-HPP has an adenylation domain that accepts the substrates before catalysis.
The second step is catalyzed by a nonribosomal peptide synthetase-like enzyme (NRPS-like, because it does not have a canonical condensation domain, called the atromentin/quinone synthetase).
Ppants have been successfully used from cDNA derived from A. nidulans (e.g. NpgA), Streptomyces verticillus (Svp), and Paxillus involutus (PptA).
A few studies, notably from the bacterium Burkholderia thailandensis by Biggins et al., have shown that the aminotransferase gene may be absent, and this activity can be supplied via its primary metabolism.
Diarylcyclopentenones include involutin, involuton, gyrocycanin, gyroporin (oxidized variant of gyrocyanin), anhydroinvolutin, and chamonixin.
The various enzymes involved in the formation of these pigments aside from the genetic and enzymatic basis for the production of its precursor atromentin is unknown.
In Paxillus involutus, six nonribosomal peptide synthetase-like enzymes were identified in the annotated genome that is available via the JGI MycoCosm portal.