Barnes–Wall lattice

In mathematics, the Barnes–Wall lattice Λ16, discovered by Eric Stephen Barnes and G. E. (Tim) Wall (Barnes & Wall (1959)), is the 16-dimensional positive-definite even integral lattice of discriminant 28 with no norm-2 vectors.

It is the sublattice of the Leech lattice fixed by a certain automorphism of order 2, and is analogous to the Coxeter–Todd lattice.

The automorphism group of the Barnes–Wall lattice has order 89181388800 = 221 35 52 7 and has structure 21+8 PSO8+(F2).

There are 4320 vectors of norm 4 in the Barnes–Wall lattice (the shortest nonzero vectors in this lattice).

The genus of the Barnes–Wall lattice was described by Scharlau & Venkov (1994) and contains 24 lattices; all the elements other than the Barnes–Wall lattice have root system of maximal rank 16.

The Barnes–Wall lattice is described in detail in (Conway & Sloane 1999, section 4.10).

While Λ16 is often referred to as the Barnes-Wall lattice, their original article in fact construct a family of lattices of increasing dimension n=2k for any integer k, and increasing normalized minimal distance, namely n1/4.

This is to be compared to the normalized minimal distance of 1 for the trivial lattice

, and an upper bound of

π

π e

given by Minkowski's theorem applied to Euclidean balls.

Interestingly, this family comes with a polynomial time decoding algorithm by Micciancio & Nicolesi (2008).

The generator matrix for the Barnes-Wall Lattice

is given by the following matrix:

{\displaystyle {\frac {1}{2}}\left({\begin{array}{cccccccccccccccc}1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1\\0&2&0&0&0&0&0&2&0&0&0&2&0&2&0&0\\0&0&2&0&0&0&0&2&0&0&0&2&0&0&2&0\\0&0&0&2&0&0&0&2&0&0&0&2&0&0&0&2\\0&0&0&0&2&0&0&2&0&0&0&0&0&2&2&0\\0&0&0&0&0&2&0&2&0&0&0&0&0&2&0&2\\0&0&0&0&0&0&2&2&0&0&0&0&0&0&2&2\\0&0&0&0&0&0&0&4&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&2&0&0&2&0&2&2&0\\0&0&0&0&0&0&0&0&0&2&0&2&0&2&0&2\\0&0&0&0&0&0&0&0&0&0&2&2&0&0&2&2\\0&0&0&0&0&0&0&0&0&0&0&4&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&2&2&2&2\\0&0&0&0&0&0&0&0&0&0&0&0&0&4&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&4&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&4\end{array}}\right)}

The lattice spanned by the following matrix is isomorphic to the above,

{\displaystyle {\frac {1}{2}}\left({\begin{array}{cccccccccccccccc}1&0&0&0&0&1&0&1&0&0&1&1&0&1&1&1\\0&1&0&0&0&1&1&1&1&0&1&0&1&1&0&0\\0&0&1&0&0&0&1&1&1&1&0&1&0&1&1&0\\0&0&0&1&0&1&0&0&1&1&0&1&1&1&0&1\\0&0&0&0&1&0&1&0&0&1&1&0&1&1&1&1\\0&0&0&0&0&2&0&0&0&0&0&0&0&0&0&2\\0&0&0&0&0&0&2&0&0&0&0&0&0&0&0&2\\0&0&0&0&0&0&0&2&0&0&0&0&0&0&0&2\\0&0&0&0&0&0&0&0&2&0&0&0&0&0&0&2\\0&0&0&0&0&0&0&0&0&2&0&0&0&0&0&2\\0&0&0&0&0&0&0&0&0&0&2&0&0&0&0&2\\0&0&0&0&0&0&0&0&0&0&0&2&0&0&0&2\\0&0&0&0&0&0&0&0&0&0&0&0&2&0&0&2\\0&0&0&0&0&0&0&0&0&0&0&0&0&2&0&2\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&2&2\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&4\\\end{array}}\right)}

The lattice theta function for the Barnes Wall lattice

Barnes-Wall

θ

θ

{\displaystyle {\begin{aligned}\Theta _{\Lambda _{\text{Barnes-Wall }}}(z)&=1/2\left\{\theta _{2}\left(q\right)^{16}+\theta _{3}\left(q\right)^{16}+\theta _{4}\left(q^{2}\right)^{16}+30\theta _{2}\left(q\right)^{8}\theta _{3}\left(q\right)^{8}\right\}\\&=1+4320q^{2}+61440q^{3}+\cdots \end{aligned}}}

where the thetas are Jacobi theta functions.

{\displaystyle {\begin{aligned}&\theta _{2}(q)=\sum _{n=-\infty }^{\infty }q^{(m+1/2)^{2}}\\&\theta _{3}(q)=\sum _{n=-\infty }^{\infty }q^{m^{2}}\\&\theta _{4}(q)=\sum _{n=-\infty }^{\infty }(-q)^{m^{2}}\end{aligned}}}

Note that the lattice theta functions for

{\displaystyle {\begin{aligned}\Theta _{E_{8}}(z)&={\frac {1}{2}}\left(\theta _{2}(q)^{8}+\theta _{3}(q)^{8}+\theta _{4}(q)^{8}\right)\\&=\theta _{2}\left(q^{2}\right)^{8}+14\theta _{2}\left(q^{2}\right)^{4}\theta _{3}\left(q^{2}\right)^{4}+\theta _{3}\left(q^{2}\right)^{8}\\&=1+240q^{2}+2160q^{4}+6720q^{6}+17520q^{8}+\cdots \end{aligned}}}

σ

This mathematics-related article is a stub.

You can help Wikipedia by expanding it.

The projection of the 4320 shortest vectors of Barnes Wall lattice
The projection of the 4320 lattice points without lines