Centimetre–gram–second system of units

In many fields of science and engineering, SI is the only system of units in use, but CGS is still prevalent in certain subfields.

In measurements of purely mechanical systems (involving units of length, mass, force, energy, pressure, and so on), the differences between CGS and SI are straightforward: the unit-conversion factors are all powers of 10 as 100 cm = 1 m and 1000 g = 1 kg.

On the other hand, in measurements of electromagnetic phenomena (involving units of charge, electric and magnetic fields, voltage, and so on), converting between CGS and SI is less straightforward.

For example, many everyday objects are hundreds or thousands of centimetres long, such as humans, rooms and buildings.

Starting in the 1880s, and more significantly by the mid-20th century, CGS was gradually superseded internationally for scientific purposes by the MKS (metre–kilogram–second) system, which in turn developed into the modern SI standard.

Maxwell's equations can be written in each of these systems as:[10][13] In the electrostatic units variant of the CGS system, (CGS-ESU), charge is defined as the quantity that obeys a form of Coulomb's law without a multiplying constant (and current is then defined as charge per unit time):

In CGS-ESU, all electric and magnetic quantities are dimensionally expressible in terms of length, mass, and time, and none has an independent dimension.

Doing this avoids the inconveniently large and small electrical units that arise in the esu and emu systems.

[16] As well as the volt and ampere, the farad (capacitance), ohm (resistance), coulomb (electric charge), and henry (inductance) are consequently also used in the practical system and are the same as the SI units.

The unit of mass was chosen to remove powers of ten from contexts in which they were considered to be objectionable (e.g., P = VI and F = qE).

With its system of uniquely named units, the SI removes any confusion in usage: 1 ampere is a fixed value of a specified quantity, and so are 1 henry, 1 ohm, and 1 volt.

In the CGS-Gaussian system, electric and magnetic fields have the same units, 4π𝜖0 is replaced by 1, and the only dimensional constant appearing in the Maxwell equations is c, the speed of light.

In SI, and other rationalized systems (for example, Heaviside–Lorentz), the unit of current was chosen such that electromagnetic equations concerning charged spheres contain 4π, those concerning coils of current and straight wires contain 2π and those dealing with charged surfaces lack π entirely, which was the most convenient choice for applications in electrical engineering and relates directly to the geometric symmetry of the system being described by the equation.

For example, in particle physics a system is in use where every quantity is expressed by only one unit of energy, the electronvolt, with lengths, times, and so on all converted into units of energy by inserting factors of speed of light c and the reduced Planck constant ħ.