A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications.
An example of a WSAN would be a collection of sensors arranged throughout an agricultural facility to monitor soil moisture levels, report the data back to a computer in the main office for analysis and trend modeling, and maybe turn on automatic watering spigots if the level is too low.
Typically a WLAN offers much better speeds and delays within the local network than an average consumer's Internet access.
Typical 2G standards include GSM and IS-95 with extensions via GPRS, EDGE and 1xRTT, providing Internet access to users of originally voice centric 2G networks.
Antenna, RF front end enhancements and minor protocol timer tweaks have helped deploy long range P2P networks compromising on radial coverage, throughput and/or spectra efficiency (310 km & 382 km) Notes: All speeds are theoretical maximums and will vary by a number of factors, including the use of external antennas, distance from the tower and the ground speed (e.g. communications on a train may be poorer than when standing still).
The peak bit rate of the standard is the net bit rate provided by the physical layer in the fastest transmission mode (using the fastest modulation scheme and error code), excluding forward error correction coding and other physical layer overhead.
The theoretical maximum throughput for end user is clearly lower than the peak data rate due to higher layer overheads.
The typical throughput is often even lower because of other traffic sharing the same network or cell, interference or even the fixed line capacity from the base station onwards being limited.
Note that these figures cannot be used to predict the performance of any given standard in any given environment, but rather as benchmarks against which actual experience might be compared.