Dehn function

The notion of a Dehn function is motivated by isoperimetric problems in geometry, such as the classic isoperimetric inequality for the Euclidean plane and, more generally, the notion of a filling area function that estimates the area of a minimal surface in a Riemannian manifold in terms of the length of the boundary curve of that surface.

The idea of an isoperimetric function for a finitely presented group goes back to the work of Max Dehn in 1910s.

In his 1987 monograph "Hyperbolic groups"[3] Gromov proved that a finitely presented group is word-hyperbolic if and only if it satisfies a linear isoperimetric inequality, that is, if and only if the Dehn function of this group is equivalent to the function f(n) = n. Gromov's proof was in large part informed by analogy with filling area functions for compact Riemannian manifolds where the area of a minimal surface bounding a null-homotopic closed curve is bounded in terms of the length of that curve.

Let w ∈ F(X) be a relation in G, that is, a freely reduced word such that w = 1 in G. Note that this is equivalent to saying that w belongs to the normal closure of R in F(X), that is, there exists a representation of w as where m ≥ 0 and where ri ∈ R± 1 for i = 1, ..., m. For w ∈ F(X) satisfying w = 1 in G, the area of w with respect to (∗), denoted Area(w), is the smallest m ≥ 0 such that there exists a representation (♠) for w as the product in F(X) of m conjugates of elements of R± 1.

Also, 1 ≈ n. If a finite group presentation admits an isoperimetric function f(n) that is equivalent to a linear (respectively, quadratic, cubic, polynomial, exponential, etc.)