Predecessor problem

In computer science, the predecessor problem involves maintaining a set of items to, given an element, efficiently query which element precedes or succeeds that element in an order.

Data structures used to solve the problem include balanced binary search trees, van Emde Boas trees, and fusion trees.

In the static predecessor problem, the set of elements does not change, but in the dynamic predecessor problem, insertions into and deletions from the set are allowed.

[1] The predecessor problem is a simple case of the nearest neighbor problem, and data structures that solve it have applications in problems like integer sorting.

The problem consists of maintaining a set S, which contains a subset of U integers.

Each of these integers can be stored with a word size of w, implying that

Data structures that solve the problem support these operations:[2] In addition, data structures which solve the dynamic version of the problem also support these operations: The problem is typically analyzed in a transdichotomous model of computation such as word RAM.

One simple solution to this problem is to use a balanced binary search tree, which achieves (in Big O notation) a running time of

The Van Emde Boas tree achieves a query time of

[1] Dan Willard proposed an improvement on this space usage with the x-fast trie, which requires

space and the same query time, and the more complicated y-fast trie, which only requires

[3] Fusion trees, introduced by Michael Fredman and Willard, achieve

for predecessor queries for the static problem.

[4] The dynamic problem has been solved using exponential trees with

[6] There have been a number of papers proving lower bounds on the predecessor problem, or identifying what the running time of asymptotically optimal solutions would be.

For example, Michael Beame and Faith Ellen proved that for all values of w, there exists a value of n with query time (in Big Theta notation)

, and similarly, for all values of n, there exists a value of n such that the query time is

[1] Other proofs of lower bounds include the notion of communication complexity.

For the static predecessor problem, Mihai Pătrașcu and Mikkel Thorup showed the following lower bound for the optimal search time, in the cell-probe model:[7]

ℓ − lg ⁡ n

where the RAM has word length

bits each and is represented in the RAM using

words of space, and defining

w = ℓ = γ lg ⁡ n

, the optimal search time is

( lg ⁡ ℓ )

and the van Emde Boas tree achieves this bound.

A binary tree with 4 levels. The nodes on each level are: 3: (), 2: (0) and (1), 1: (00) and (10), 0: (001), (100) and (101). The unlabeled node is the root. There are directed edges between the following nodes: ()->(0), ()->(1), (0)->(00), (0)->(001) in blue, (1)->(10), (1)->(101) in blue, (00)->(001) twice, once in blue, (10)->(100), (10)->(101), (001)<->(100), (100)<->(101). The nodes on each level are contained in a box, labeled with LSS(<level>).
An x-fast trie containing the integers 1 (001 2 ), 4 (100 2 ) and 5 (101 2 ), which can be used to efficiently solve the predecessor problem.