In Euclidean and projective geometry, five points determine a conic (a degree-2 plane curve), just as two (distinct) points determine a line (a degree-1 plane curve).
Indeed, given any five points there is a conic passing through them, but if three of the points are collinear the conic will be degenerate (reducible, because it contains a line), and may not be unique; see further discussion.
This result can be proven numerous different ways; the dimension counting argument is most direct, and generalizes to higher degree, while other proofs are special to conics.
Intuitively, passing through five points in general linear position specifies five independent linear constraints on the (projective) linear space of conics, and hence specifies a unique conic, though this brief statement ignores subtleties.
defines a line, and any 3 points on this (indeed any number of points) lie on a line – thus general linear position ensures a conic.
The second, that the constraints are independent, is significantly subtler: it corresponds to the fact that given five points in general linear position in the plane, their images in
under the Veronese map are in general linear position, which is true because the Veronese map is biregular: i.e., if the image of five points satisfy a relation, then the relation can be pulled back and the original points must also satisfy a relation.
The Veronese map corresponds to "evaluation of a conic at a point", and the statement about independence of constraints is exactly a geometric statement about this map.
That five points determine a conic can be proven by synthetic geometry—i.e., in terms of lines and points in the plane—in addition to the analytic (algebraic) proof given above.
by a projective transformation, in which case the pencils of lines correspond to the horizontal and vertical lines in the plane, and the intersections of corresponding lines to the graph of a function, which (must be shown) is a hyperbola, hence a conic, hence the original curve C is a conic.
of the five points, the equation for the conic can be found by linear algebra, by writing and solving the five equations in the coefficients, substituting the variables with the values of the coordinates: five equations, six unknowns, but homogeneous so scaling removes one dimension; concretely, setting one of the coefficients to 1 accomplishes this.
This can be achieved quite directly as the following determinantal equation: This matrix has variables in its first row and numbers in all other rows, so the determinant is visibly a linear combination of the six monomials of degree at most 2.
Also, the resulting polynomial clearly vanishes at the five input points (when
Pascal's theorem states that given 6 points on a conic (a hexagon), the lines defined by opposite sides intersect in three collinear points.
This can be reversed to construct the possible locations for a 6th point, given 5 existing ones.
The natural generalization is to ask for what value of k a configuration of k points (in general position) in n-space determines a variety of degree d and dimension m, which is a fundamental question in enumerative geometry.
In the case of a hypersurface, the answer is given in terms of the multiset coefficient, more familiarly the binomial coefficient, or more elegantly the rising factorial, as: This is via the analogous analysis of the Veronese map: k points in general position impose k independent linear conditions on a variety (because the Veronese map is biregular), and the number of monomials of degree d in
from which 1 is subtracted because of projectivization: multiplying a polynomial by a constant does not change its zeros.
In the above formula, the number of points k is a polynomial in d of degree n, with leading coefficient
While five points determine a conic, sets of six or more points on a conic are not in general position, that is, they are constrained as is demonstrated in Pascal's theorem.
Similarly, while nine points determine a cubic, if the nine points lie on more than one cubic—i.e., they are the intersection of two cubics—then they are not in general position, and indeed satisfy an addition constraint, as stated in the Cayley–Bacharach theorem.
Similarly, three points determine a 2-dimensional linear system (net), two points determine a 3-dimensional linear system (web), one point determines a 4-dimensional linear system, and zero points place no constraints on the 5-dimensional linear system of all conics.
However, in a pappian projective plane a conic is a circle only if it passes through two specific points on the line at infinity, so a circle is determined by five non-collinear points, three in the affine plane and these two special points.
Similar considerations explain the smaller than expected number of points needed to define pencils of circles.
Instead of passing through points, a different condition on a curve is being tangent to a given line.
Being tangent to five given lines also determines a conic, by projective duality, but from the algebraic point of view tangency to a line is a quadratic constraint, so naive dimension counting yields 25 = 32 conics tangent to five given lines, of which 31 must be ascribed to degenerate conics, as described in fudge factors in enumerative geometry; formalizing this intuition requires significant further development to justify.
As a question in real geometry, a full analysis involves many special cases, and the actual number of circles may be any number between 0 and 8, except for 7.