Flory–Schulz distribution

The Flory–Schulz distribution is a discrete probability distribution named after Paul Flory and Günter Victor Schulz that describes the relative ratios of polymers of different length that occur in an ideal step-growth polymerization process.

The probability mass function (pmf) for the mass fraction of chains of length

In this equation, k is the number of monomers in the chain,[1] and 0

[2] The form of this distribution implies is that shorter polymers are favored over longer ones — the chain length is geometrically distributed.

Apart from polymerization processes, this distribution is also relevant to the Fischer–Tropsch process that is conceptually related, where it is known as Anderson-Schulz-Flory (ASF) distribution, in that lighter hydrocarbons are converted to heavier hydrocarbons that are desirable as a liquid fuel.

The pmf of this distribution is a solution of the following equation:

{\displaystyle \left\{{\begin{array}{l}(a-1)(k+1)w_{a}(k)+kw_{a}(k+1)=0{\text{,}}\\[10pt]w_{a}(0)=0{\text{,}}w_{a}(1)=a^{2}{\text{.

}}\end{array}}\right\}}