In mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice.
Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names.
Only the morphisms of CHey are homomorphisms of complete Heyting algebras.
Locales and frames form the foundation of pointless topology, which, instead of building on point-set topology, recasts the ideas of general topology in categorical terms, as statements on frames and locales.
Consider a partially ordered set (P, ≤) that is a complete lattice.
Then P is a complete Heyting algebra or frame if any of the following equivalent conditions hold: The entailed definition of Heyting implication is
Using a bit more category theory, we can equivalently define a frame to be a cocomplete cartesian closed poset.
The system of all open sets of a given topological space ordered by inclusion is a complete Heyting algebra.
The objects of the category CHey, the category Frm of frames and the category Loc of locales are complete Heyting algebras.
These categories differ in what constitutes a morphism: The relation of locales and their maps to topological spaces and continuous functions may be seen as follows.
The power sets P(X) and P(Y) are complete Boolean algebras, and the map
is a homomorphism of complete Boolean algebras.
Suppose the spaces X and Y are topological spaces, endowed with the topology O(X) and O(Y) of open sets on X and Y.
preserves finite meets and arbitrary joins of these subframes.
This shows that O is a functor from the category Top of topological spaces to Loc, taking any continuous map to the map in Loc that is defined in Frm to be the inverse image frame homomorphism Given a map of locales
in Loc, it is common to write
for the frame homomorphism that defines it in Frm.
Conversely, any locale A has a topological space S(A), called its spectrum, that best approximates the locale.
In addition, any map of locales
determines a continuous map
Moreover this assignment is functorial: letting P(1) denote the locale that is obtained as the power set of the terminal set
in Loc, i.e., the frame homomorphisms
It is easy to verify that this defines a frame homomorphism
hence obtaining a continuous map
from Loc to Top, which is right adjoint to O.
Any locale that is isomorphic to the topology of its spectrum is called spatial, and any topological space that is homeomorphic to the spectrum of its locale of open sets is called sober.
The adjunction between topological spaces and locales restricts to an equivalence of categories between sober spaces and spatial locales.
Any function that preserves all joins (and hence any frame homomorphism) has a right adjoint, and, conversely, any function that preserves all meets has a left adjoint.
Hence, the category Loc is isomorphic to the category whose objects are the frames and whose morphisms are the meet preserving functions whose left adjoints preserve finite meets.
This is often regarded as a representation of Loc, but it should not be confused with Loc itself, whose morphisms are formally the same as frame homomorphisms in the opposite direction.