A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, and radio).
[4] A team of researchers at the University of Leicester conducted an analysis of the burst's X-ray afterglow with the XMM-Newton observatory.
They found evidence for emission lines of magnesium, silicon, sulphur, and various other chemical elements.
[8] Despite a follow-up paper from the Leicester team to address these concerns,[9] the findings remained controversial, and GRB 020813 was given the distinction of being the first burst with direct evidence of a supernova relation.
[10][11] Optical, infrared, and X-ray observations taken by the Hubble Space Telescope between 14 and 59 days after the burst's detection revealed a blue galaxy with an apparent magnitude of 24.95 ± 0.11.