Lucas number

The Lucas sequence is an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci sequence.

Individual numbers in the Lucas sequence are known as Lucas numbers.

Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values.

[1] This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio.

[2] The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between.

[3] The first few Lucas numbers are which coincides for example with the number of independent vertex sets for cyclic graphs

[1] As with the Fibonacci numbers, each Lucas number is defined to be the sum of its two immediately previous terms, thereby forming a Fibonacci integer sequence.

, which differs from the first two Fibonacci numbers

Though closely related in definition, Lucas and Fibonacci numbers exhibit distinct properties.

The Lucas numbers may thus be defined as follows: (where n belongs to the natural numbers) All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the Fibonacci sequence itself is the first row and the Lucas sequence is the second row.

Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to the golden ratio.

, one can extend the Lucas numbers to negative integers to obtain a doubly infinite sequence: The formula for terms with negative indices in this sequence is The Lucas numbers are related to the Fibonacci numbers by many identities.

or, equivalently, the integer part of

is obtained: For integers n ≥ 2, we also get: with remainder R satisfying Many of the Fibonacci identities have parallels in Lucas numbers.

Let be the generating function of the Lucas numbers.

By a direct computation, which can be rearranged as

gives the generating function for the negative indexed Lucas numbers,

satisfies the functional equation As the generating function for the Fibonacci numbers is given by we have which proves that and proves that The partial fraction decomposition is given by where

This can be used to prove the generating function, as If

The Lucas numbers satisfy Gauss congruence.

which satisfy this property are known as Fibonacci pseudoprimes.

A Lucas prime is a Lucas number that is prime.

The first few Lucas primes are The indices of these primes are (for example, L4 = 7) As of September 2015[update], the largest confirmed Lucas prime is L148091, which has 30950 decimal digits.

[4] As of August 2022[update], the largest known Lucas probable prime is L5466311, with 1,142,392 decimal digits.

[6] L2m is prime for m = 1, 2, 3, and 4 and no other known values of m. In the same way as Fibonacci polynomials are derived from the Fibonacci numbers, the Lucas polynomials

are a polynomial sequence derived from the Lucas numbers.

Close rational approximations for powers of the golden ratio can be obtained from their continued fractions.

For positive integers n, the continued fractions are: For example: is the limit of with the error in each term being about 1% of the error in the previous term; and is the limit of with the error in each term being about 0.3% that of the second previous term.

Lucas numbers are the second most common pattern in sunflowers after Fibonacci numbers, when clockwise and counter-clockwise spirals are counted, according to an analysis of 657 sunflowers in 2016.

The Lucas spiral, made with quarter- arcs , is a good approximation of the golden spiral when its terms are large. However, when its terms become very small, the arc's radius decreases rapidly from 3 to 1 then increases from 1 to 2.
The first identity expressed visually