Thompson groups

The group F also has realizations in terms of operations on ordered rooted binary trees, and as a subgroup of the piecewise linear homeomorphisms of the unit interval that preserve orientation and whose non-differentiable points are dyadic rationals and whose slopes are all powers of 2.

The group V is obtained from T by adding the discontinuous map that fixes the points of the half-open interval [0,1/2) and exchanges [1/2,3/4) and [3/4,1) in the obvious way.

Its current status is open: E. Shavgulidze[1] published a paper in 2009 in which he claimed to prove that F is amenable, but an error was found, as is explained in the MR review.

In a paper that was only published much later but was in circulation as a preprint at that time, P. Freyd and A. Heller [2] showed that the shift map on F induces an unsplittable homotopy idempotent on the Eilenberg–MacLane space K(F,1) and that this is universal in an interesting sense.

Independently, J. Dydak and P. Minc [3] created a less well-known model of F in connection with a problem in shape theory.

In 1979, R. Geoghegan made four conjectures about F: (1) F has type FP∞; (2) All homotopy groups of F at infinity are trivial; (3) F has no non-abelian free subgroups; (4) F is non-amenable.

D. Farley [8] has shown that F acts as deck transformations on a locally finite CAT(0) cubical complex (necessarily of infinite dimension).

The Thompson group F is generated by operations like this on binary trees. Here L and T are nodes, but A B and R can be replaced by more general trees.