Tolman–Oppenheimer–Volkoff limit

The original calculation in 1939, which neglected complications such as nuclear forces between neutrons, placed this limit at approximately 0.7 solar masses (M☉).

[4][5] The idea that there should be an absolute upper limit for the mass of a cold (as distinct from thermal pressure supported) self-gravitating body dates back to the 1932 work of Lev Landau, based on the Pauli exclusion principle.

This even applies in the white dwarf case (that of the Chandrasekhar limit) for which the fermionic particles providing the pressure are electrons.

Oppenheimer and Volkoff's paper notes that "the effect of repulsive forces, i.e., of raising the pressure for a given density above the value given by the Fermi equation of state ... could tend to prevent the collapse.

"[7] And indeed, the most massive neutron star detected so far, PSR J0952–0607, is estimated to be much heavier than Oppenheimer and Volkoff's TOV limit at 2.35±0.17 M☉.

In a star less massive than the limit, the gravitational compression is balanced by short-range repulsive neutron–neutron interactions mediated by the strong force and also by the quantum degeneracy pressure of neutrons, preventing collapse.

Oppenheimer and Volkoff discounted the influence of heat, stating in reference to work by Landau (1932), 'even [at] 107 degrees... the pressure is determined essentially by the density only and not by the temperature'[7] – yet it has been estimated[16] that temperatures can reach up to approximately >109 K during formation of a neutron star, mergers and binary accretion.