The ALASA program's objective is to use an unmodified aircraft platform (except for software) that does not have to be dedicated to the mission to place a 100 lb satellite into orbit that requires only 24 hours notice to integrate and launch the payload, with the ability to re-plan the launch in flight and relocate the aircraft to any civilian airport or military airfield in a crisis situation, while using onboard GPS/inertial position reporting rather than ground-based radar tracking.
The six awardees who signed phase 1 contracts with DARPA included:[1] In the first phase, Boeing, Lockheed Martin and Virgin Galactic were funded to explore different ALASA system concepts while Northrop Grumman, Space Information Laboratories and Ventions were contracted to work on enabling technologies that could be used by any or all of the system teams.
Using a modified fighter-jet to launch the rocket would increase satellite launch sites from four locations (Cape Canaveral Air Force Station, Florida; Vandenberg Air Force Base, California; Wallops Flight Facility, Virginia; and Kodiak Island, Alaska) to any available runway.
[8] By June 2015, DARPA and the Air Force had reportedly began SALVO flights, potentially having already commenced them to counter Chinese and Russian electronic and infrared surveillance; this could mean ALASA would give the U.S. a "stealth satellite launch" capability.
[9] The program had a budget of "US$46 million for the 18-month first phase through September 2013, when [DARPA] planned another competition to select at least one team to conduct up to 36 launches in 2015 [in order to] to demonstrate [the Alasa system] at a persuasive scale.
[4] DARPA terminated the program in late 2015, due to safety concerns with the unique monopropellant, NA-7, which exploded in two ground tests.