It describes the general relation between resistance to change (persistence of behavior) and the rate of reinforcement obtained in a given situation.
Consistent with behavioral momentum theory, resistance to disruption often has been found to be greater in stimulus contexts that signal higher rates or magnitudes of reinforcement (see Nevin, 1992, for a review).
The findings of Nevin et al. (1990) have been extended across a number of procedures and species including goldfish (Igaki & Sakagami, 2004), rats (Harper, 1999a, 1999b; Shull, Gaynor & Grimes, 2001), pigeons (Podlesnik & Shahan, 2008), and humans (Ahearn, Clark, Gardenier, Chung & Dube, 2003; Cohen, 1996; Mace et al., 1990).
The behavioral momentum framework also has been used to account for the partial-reinforcement extinction effect (Nevin & Grace, 1999), to assess the persistence of drug-maintained behavior (Jimenez-Gomez & Shahan, 2007; Shahan & Burke, 2004), to increase task compliance (e.g., Belfiore, Lee, Scheeler & Klein, 2002), and to understand the effects of social policies on global problems (Nevin, 2005).
For instance, with equal reinforcement rates across stimulus contexts, resistance to change has been shown to be affected by manipulations to responseāreinforcer relations, including schedules that produce different baseline response rates (e.g., Lattal, 1989; Nevin, Grace, Holland & McLean), delays to reinforcement (e.g., Bell, 1999; Grace, Schwendimann & Nevin, 1998; Podlesnik, Jimenez-Gomez, Ward & Shahan, 2006; Podlesnik & Shahan, 2008), and by providing brief stimuli that accompany reinforcement (Reed & Doughty, 2005).
The relative allocation of responding across the two initial links indicates the extent to which an organism prefers one terminal-link context over the other.
Moreover, behavioral momentum theory posits that preference provides a measure of the relative conditioned-reinforcing value of the two terminal-link contexts, as described by the contextual-choice model (Grace, 1994).
Grace and Nevin (1997) assessed both relative resistance to change in a multiple schedule and preference in a concurrent-chains procedure with pigeons pecking lighted disks for food reinforcement.