In mathematics — specifically, in large deviations theory — the contraction principle is a theorem that states how a large deviation principle on one space "pushes forward" (via the pushforward of a probability measure) to a large deviation principle on another space via a continuous function.
Let X and Y be Hausdorff topological spaces and let (με)ε>0 be a family of probability measures on X that satisfies the large deviation principle with rate function I : X → [0, +∞].
Let T : X → Y be a continuous function, and let νε = T∗(με) be the push-forward measure of με by T, i.e., for each measurable set/event E ⊆ Y, νε(E) = με(T−1(E)).
Let with the convention that the infimum of I over the empty set ∅ is +∞.
Then: