Core router

Although the local area NPL network was using line speeds of 768 kbit/s from 1967, at the inception of the ARPANET (the Internet's predecessor) in 1969, the fastest links were 56 kbit/s.

The "core router" was a dedicated minicomputer called an IMP Interface Message Processor.

During the late 1990s, they expected a radical increase in demand, driven by the Dot-com bubble.

As of 2012, the typical Internet core link speed is 40 Gbit/s, with many links at higher speeds, reaching or exceeding 100 Gbit/s (out of a theoretical current maximum of 111 Gbit/s, provided by Nippon Telegraph and Telephone [citation needed]), provisioning the explosion in demand for bandwidth in the current generation of cloud computing and other bandwidth-intensive (and often latency-sensitive) applications such as high-definition video streaming (see IPTV) and Voice over IP.

This, along with newer technologies – such as DOCSIS 3, channel bonding, and VDSL2 (the latter of which can wring more than 100 Mbit/s out of plain, unshielded twisted-pair copper under normal conditions, out of a theoretical maximum of 250 Gbit/s at 0.0m from the VRAD) – and more sophisticated provisioning systems – such as FTTN (fiber [optic cable] to the node) and FTTP (fiber to the premises, either to the home or provisioned with Cat 5e cable) – can provide downstream speeds to the mass-market residential consumer in excess of 300 Mbit/s and upload speeds in excess of 100 Mbit/s with no specialized equipment or modification e.g.(Verizon FiOS).

Cisco CRS-1 Backbone Core Router