Deep image compositing

Deep data is encoded by advanced 3D renderers into an image that samples information about the path each rendered pixel takes along the z axis extending outward from the virtual camera through space, including the color and opacity of every non-opaque surface or volume it passes through along the way, as well as neighboring samples.

It might be considered somewhat analogous to the way ray tracing generates simulated photon paths through such mediums; however, ray tracing and other traditional rendering techniques generally produce images that contain only three or four channels of color and opacity values per pixel, flattened into a two dimensional frame.

The "thickness" of each slice is determined at time of render, allowing for more or less depth fidelity depending on how deep the scene is.

Even the popular addition of cryptomattes to many post-production and VFX studios' pipelines, while providing separate color-coded ID shapes for individual elements in a rendered scene to further bridge the gap between CGI and compositing, don't allow for the nearly automated and fully non-linear workflows that deep data does.

This is because deep images encapsulate enough 3D information that normally time-intensive tasks such as rotoscoping with numerous holdout mattes for complex interactions between moving characters and semi-transparent environmental volumes like smoke or water, are essentially trivial.

In addition to that efficiency and flexibility, deep data images inherently provide much higher visual quality in common areas that have been difficult with traditional renders, such as the motion-blurred edges of characters with semi-transparent elements like hair.

One downside to the use of deep images is their substantial file size, since they encode a relatively enormous amount of data per frame compared to even multichannel formats such as OpenEXR.

Dr. Peter Hillman for the long-term development and continued advancement of innovative, robust and complete toolsets for deep compositing and to Colin Doncaster, Johannes Saam, Areito Echevarria, Janne Kontkanen and Chris Cooper for the development, prototyping and promotion of technologies and workflows for deep compositing.