The ever-rising cost of avgas and doubts about its future availability[1] have spurred a resurgence in aircraft diesel engine production in the early 2010s.
[7] A number of manufacturers built diesel aero engines in the 1920s and 1930s; the best known were the Packard air-cooled radial, and the Junkers Jumo 205, which was moderately successful, but proved unsuitable for combat use in World War II.
The Blohm & Voss BV 138 trimotor maritime patrol flying boat, however, was powered with the more developed Junkers Jumo 207 powerplant, and was more successful with its trio of diesel Jumo 207s conferring upwards of a maximum 2,100 km (1,300 mile) combat radius upon the nearly 300 examples of the BV 138 built during World War II.
The first successful flight of a diesel powered aircraft was made on September 18, 1928, in a Stinson model SM-1DX Detroiter registration number X7654.
[9] Entering service in the early 1930s, the two-stroke Junkers Jumo 205 opposed-piston engine was much more widely used than previous aero diesels.
The Royal Aircraft Establishment developed an experimental compression ignition (diesel) version of the Rolls-Royce Condor in 1932, flying it in a Hawker Horsley for test purposes.
With fuel available cheaply and most research interest in turboprops and jets for high-speed airliners, diesel-powered aircraft virtually disappeared.
The British Air Ministry supported the development of the 2,200 kW (3,000 hp) Napier Nomad, a combination of piston and turboprop engines, which was exceptionally efficient in terms of brake specific fuel consumption, but judged too bulky and complex and canceled in 1955.
Finally, automotive diesel technologies have improved greatly in recent years, offering higher power-to-weight ratios more suitable for aircraft application.
Certified diesel-powered light planes are currently available, and a number of companies are developing new engine and aircraft designs for the purpose.
I think the truth is that everyone was diesel-minded in those days; it seemed as if the diesel engine for aeroplanes was only just around the corner, with the promise of great fuel economy".
Continental Motors, Inc. subsidiary Technify Motors GmbH of Sankt Egidien, Germany, is the new TC holder of the Thielert TAE 110 certified by the EASA on 8 March 2001, a 4-cylinder, four stroke 1,689 cm3 (103.1 in3) engine with common rail direct injection, turbocharger, 1:1.4138 reduction gearbox and FADEC producing 81 kW (109 hp) at takeoff at 3675 rpm and 66 kW (89 hp) continuously at 3400 rpm for 141 kg (311 lb).
EASA certified on 20 June 2017, the Centurion 3.0 is a 2,987 cm3 (182.3 in3) four stroke V6, also with common rail, turbocharger, Electronic Engine Control Unit (EECU) and 1 : 1.66 reduction gearbox, weighting 265 kg (584 lb) and outputting 221 kW (300 HP) at take-off, 202 kW (272 HP) continuously, both at 2340 propeller RPM.
The 134 kg (295 lb) of the 99 kW (133 hp) 1.7 engine is similar to the O-320 but its displacement is less than a third and it achieves maximum power at 2300 prop RPM instead of 2700.
SMA Engines, located in Bourges, France, have designed the SMA SR305-230: a direct drive four-stroke, air and oil-cooled, turbo-diesel of four horizontally opposed cylinders displacing 4,988 cm3 (304.4 in3) with an electronically controlled mechanical pump fuel injection, it obtained EASA certification on 20 April 2001 for 169 kW (227 hp) at 2200 rpm, weighting 195 kg (430 lb).
[18] In 2011, Austro Engine was developing a 280 hp (210 kW) 6-cylinder in cooperation with Steyr Motors, based on their 3.2 litres (200 in3) block, to be used in the Diamond DA50.
of Castel Maggiore, Italy, had its TDA CR 1.9 8V EASA certified on 11 June 2010: a 1.9 L (120 in3) liquid cooled, 4 cylinder, 4 stroke, 8 valve engine, with a turbocharger and Common Rail injection, a 1:0.644 reduction gearbox and dual FADEC, it produces 118 kW (160 hp) at take-off and 107 kW (146 hp) continuously at 2450 propeller RPM for 205 kg (452 lb).
[26] Continental Motors, Inc. of Mobile, Alabama, received on December 19, 2012, a type certification for its Continental CD-230 under the official TD-300-B designation: a turbocharged 4-stroke direct drive flat four air-cooled engine of 4,972 cm3 (303.4 in3), with direct fuel injection and electronic control unit with a mechanical back-up, outputting continuously 230 hp (170 kW) at 2200 RPM for 431 lb (195.5 kg) dry.
RED Aircraft GmbH of Adenau, Germany, obtained EASA type certification on 19 December 2014 for its 6,134 cm3 (374.3 in3) RED A03 V12 four stroke, with common rail, turbocharger, 1:1.88 reduction gearbox and single lever FADEC/EECS, outputting 368 kW (500 hp) at take-off at 2127 propeller RPM and 338 kW (460 hp) at 1995 propeller RPM continuously for 363 kg (800 lb) dry.
[33][failed verification] Diesel Air Limited, Wilksch and Zoche have all had considerable problems bringing their prototype designs into production, with delays running into several years.
In April 2008 IndUS Aviation introduced the first diesel light-sport aircraft with a WAM 120 having flown 400 hours on a Thorp T211 in England for the past four years.
A Rutan LongEz canard-pusher (G-LEZE) has also flown with the WAM-120 engine with test flights showing a TAS of 300 km/h (160 kn) at 3,400 m (11,000 ft) and 22 litre/hr.
[citation needed] Diesel Air Limited is a British company developing a 75 kW (100 hp) twin-cylinder (therefore four-piston), two-stroke opposed-piston engine inspired by the original Junkers design.
[49] The FlyEco diesel is a three-cylinder, 0.8 L (49 in3) engine producing 80 HP / 58,8 kW up to 3,800 RPM and reduced by 1:1.50-1.79, derived from the Smart Car.
[52] The powerplant is a liquid-cooled, dry sump lubricated 4.6 L (280 in3) 90° V8 engine with 1,800 bar (26,000 psi) common rail direct injection, fully machined aluminium blocks, titanium connecting rods, steel pistons and liners, one turbocharger per cylinder bank.