Formic acid fuel cell

They are also able to overcome certain problems inherent to traditional hydrogen (H2) feed fuel cells such as safe handling, storage, and H2 transportation.

In addition, the storage of formic acid is easier and safer than that of pure hydrogen, and FA does not need to be kept at high pressures and/or low temperatures.

Similar to methanol, FA is a small organic molecule fed directly into the fuel cell, which removes the need for complicated catalytic reforming.

However, compared to methanol, it has lower toxicity, better oxidation kinetics, and higher fuel cell efficiency, since formic acid does not cross over the polymer membrane.

[4] Because of its low cross over tendency, FA can be used at higher concentrations than methanol, mitigating the drawback of the lower volumetric energy density (4.4 kWh/dm3 vs 2.13 kWh/dm3).

Carbon dioxide is formed and protons (H+) are passed through the polymer membrane to react with oxygen on a catalyst layer located at the cathode.

However, in 2005 - 2006, other researchers (in particular Richard Masel's group at the University of Illinois at Urbana-Champaign) found that the reason for the low performance was the usage of platinum as a catalyst, as it is common in most other types of fuel cells.

[15] As of April 2006, Tekion[16] held the exclusive license to DFAFC fuel cell technology using PEM membranes and formic-acid fuel from the University of Illinois at Urbana-Champaign, and with an investment from Motorola,[17] was partnering with BASF to design and manufacture power packs by late 2007,[18] but development appears to have stalled, and almost all information was removed from Tekion's website before April 24, 2010.