Besides its planform, it is characterised by: Some locations have been given special names: A wing with a conventional aerofoil profile makes a negative contribution to longitudinal stability.
With the same disturbance, the presence of a tailplane produces a restoring nose-down pitching moment, which may counteract the natural instability of the wing and make the aircraft longitudinally stable (in much the same way a weather vane always points into the wind).
[2] On some pioneer designs, such as the Bleriot XI, the centre of gravity was between the neutral point and the tailplane, which also provided positive lift.
The requirements for stability were not understood until shortly before World War I – the era within which the British Bristol Scout light biplane was designed for civilian use, with an airfoiled lifting tail throughout its production run into the early World War I years and British military service from 1914 to 1916 – when it was realised that moving the centre of gravity further forwards allowed the use of a non-lifting tailplane in which the lift is nominally neither positive nor negative but zero, which leads to more stable behaviour.
[3] Later examples of aircraft from World War I and onwards into the interwar years that had positive lift tailplanes include, chronologically, the Sopwith Camel, Charles Lindbergh's Spirit of St. Louis, the Gee Bee Model R Racer - all aircraft with a reputation for being difficult to fly, and the easier-to-fly Fleet Finch two-seat Canadian trainer biplane, itself possessing a flat-bottom airfoiled tailplane unit not unlike the earlier Bristol Scout.
An example is provided by the Bachem Ba 349 Natter VTOL rocket-powered interceptor, which had a lifting tail and was both stable and controllable in flight.
On the McDonnell Douglas F-4 Phantom II it initially occurred during takeoff and landing approach, and leading-edge slats were fitted to the tailplane upside-down in order to maintain smooth airflow and downforce "lift" at high AoA.
The Pilatus P-3 trainer required a ventral keel to cure a similar effect when spun, while the McDonnell Douglas T-45 Goshawk suffered excess downwash from the wing when the flaps were deployed, necessitating a small "SMURF" surface fixed to the fuselage, such that it aligned with the stabilizer leading-edge root at the critical angle.