[4] The species Lacticaseibacillus rhamnosus and Limosilactobacillus reuteri are commonly found in the healthy female genito-urinary tract and are helpful to regain control of dysbiotic bacterial overgrowth during an active infection.
[7] Lacticaseibacillus rhamnosus is considered a nomadic organism[8] and strains have been isolated from many different environments including the vagina and the gastrointestinal tract.
[9] The accessory genome is overtaken by genes encoding carbohydrate transport and metabolism, extracellular polysaccharides, biosynthesis, bacteriocin production, pili production, the CRISPR-Cas system, the clustered regularly interspaced short palindromic repeat (CRISPR) loci, and more than 100 transporter functions and mobile genetic elements such as phages, plasmid genes, and transposons.
[9] The genome of the specific strain L. rhamnosus LRB, in this case, taken from a human baby tooth, consists of a circular chromosome of 2,934,954 bp with 46.78% GC content.
The patent claims the L. rhamnosus GG (ATCC 53103) strain is acid- and bile-stable, has a great avidity for human intestinal mucosal cells, and produces lactic acid.
[23] A position paper published by ESPGHAN Working Group for Probiotics and Prebiotics based on a systematic review and randomized controlled trials (RCTs) suggested that L. rhamnosus GG (low quality of evidence, strong recommendation) may be considered in the management of children with acute gastroenteritis in addition to rehydration therapy.
[25] However in one non-randomized clinical observation[26] dealing with resistant childhood atopic eczema, a substantial improvement in quality of life was reported in pediatric patients given Lactobacillus rhamnosus as a supplement.
The use of L. rhamnosus GG for probiotic therapy has been linked with rare cases of sepsis in certain risk groups, primarily those with a weakened immune system and infants.
The lectin-like protein 1 purified from L. rhamnosus GR-1 is found to prevent infection by the uropathogenic E. coli UTI89 by inhibiting its adhesion to epithelial cells and by disrupting its biofilm formation.