Previous fabrication methods relied on expensive molecular beam epitaxy processes, but colloidal synthesis allows for cheaper manufacturing.
This involves placing an amount of the quantum dot solution onto a flat substrate, which is then rotated very quickly.
Quantum dot based photovoltaic cells based on dye-sensitized colloidal TiO2 films were investigated in 1991[1] and were found to exhibit promising efficiency of converting incident light energy to electrical energy, and to be incredibly encouraging due to the low cost of materials used.
A single-nanocrystal (channel) architecture in which an array of single particles between the electrodes, each separated by ~1 exciton diffusion length, was proposed to improve the device efficiency[2] and research on this type of solar cell is being conducted by groups at Stanford, Berkeley and the University of Tokyo.
[7] Recent research has experimented with lead selenide (PbSe) semiconductor, as well as with cadmium telluride photovoltaics (CdTe), which has already been well established in the production of second-generation thin film solar cells.