Orthorhombic lattices result from stretching a cubic lattice along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with a rectangular base (a by b) and height (c), such that a, b, and c are distinct.
All three bases intersect at 90° angles, so the three lattice vectors remain mutually orthogonal.
For the base-centered orthorhombic lattice, the primitive cell has the shape of a right rhombic prism;[1] it can be constructed because the two-dimensional centered rectangular base layer can also be described with primitive rhombic axes.
The orthorhombic crystal system class names, examples, Schönflies notation, Hermann-Mauguin notation, point groups, International Tables for Crystallography space group number,[2] orbifold notation, type, and space groups are listed in the table below.
Boron(gamma form) In two dimensions there are two orthorhombic Bravais lattices: primitive rectangular and centered rectangular.