Phenethylamine

Phenethylamine[note 1] (PEA) is an organic compound, natural monoamine alkaloid, and trace amine, which acts as a central nervous system stimulant in humans.

Phenethylamine is produced by a wide range of species throughout the plant and animal kingdoms, including humans;[14][18] it is also produced by certain fungi and bacteria (genera: Lactobacillus, Clostridium, Pseudomonas and the family Enterobacteriaceae) and acts as a potent antimicrobial against certain pathogenic strains of Escherichia coli (e.g., the O157:H7 strain) at sufficient concentrations.

Many substituted phenethylamines are psychoactive drugs, which belong to a variety of different drug classes, including central nervous system stimulants (e.g., amphetamine), hallucinogens (e.g., 2,5-dimethoxy-4-methylamphetamine), entactogens (e.g., 3,4-methylenedioxyamphetamine), appetite suppressants (e.g. phentermine), nasal decongestants and bronchodilators (e.g., pseudoephedrine), antidepressants (e.g. bupropion), antiparkinson agents (e.g., selegiline), and vasopressors (e.g., ephedrine), among others.

Many of these psychoactive compounds exert their pharmacological effects primarily by modulating monoamine neurotransmitter systems; however, there is no mechanism of action or biological target that is common to all members of this subclass.

Numerous endogenous compounds – including hormones, monoamine neurotransmitters, and many trace amines (e.g., dopamine, norepinephrine, adrenaline, tyramine, and others) – are substituted phenethylamines.

One method for preparing β-phenethylamine, set forth in J. C. Robinson and H. R. Snyder's Organic Syntheses (published 1955), involves the reduction of benzyl cyanide with hydrogen in liquid ammonia, in the presence of a Raney-Nickel catalyst, at a temperature of 130 °C and a pressure of 13.8 MPa.

[22] A much more convenient method for the synthesis of β-phenethylamine is the reduction of ω-nitrostyrene by lithium aluminium hydride in ether, whose successful execution was first reported by R. F. Nystrom and W. G. Brown in 1948.

[24] Assembling phenethylamine structures for synthesis of compounds such as epinephrine, amphetamines, tyrosine, and dopamine by adding the beta-aminoethyl side chain to the phenyl ring is possible.

[26] Thirty minutes of moderate- to high-intensity physical exercise has been shown to induce an increase in urinary phenylacetic acid, the primary metabolite of phenethylamine.

[3][27][28] Two reviews noted a study where the mean 24 hour urinary phenylacetic acid concentration following just 30 minutes of intense exercise rose 77% above its base level;[3][27][28] the reviews suggest that phenethylamine synthesis sharply increases during physical exercise during which it is rapidly metabolized due to its short half-life of roughly 30 seconds.

[3][27][28][4] In a resting state, phenethylamine is synthesized in catecholamine neurons from L-phenylalanine by aromatic amino acid decarboxylase at approximately the same rate as dopamine is produced.

[14] Endogenous extracellular tissue levels of trace amines measured in the brain are in the low nanomolar range.

[44] Similarly to the case of amphetamine, phenethylamine shows enhanced locomotor stimulation, a psychostimulant-like effect, in TAAR1 knockout mice.

[46][47] Unlike its derivatives norepinephrine (noradrenaline) and epinephrine (adrenaline), phenethylamine is inactive as an agonist of the α- and β-adrenergic receptors.

[5] Phenylacetaldehyde is the intermediate product which is produced by monoamine oxidase and then further metabolized into β-phenylacetic acid by aldehyde dehydrogenase.