Because of its ability to confine light in hollow cores or with confinement characteristics not possible in conventional optical fiber, PCF is now finding applications in fiber-optic communications, fiber lasers, nonlinear devices, high-power transmission, highly sensitive gas sensors, and other areas.
Other arrangements include concentric rings of two or more materials, first proposed as "Bragg fibers" by Yeh and Yariv,[8] bow-tie, panda, and elliptical hole structures (used to achieve higher birefringence due to irregularity in the relative refractive index), spiral[9] designs which allow for better control over optical properties as individual parameters can be changed.
[13] A combination of a polymer and a chalcogenide glass was used by Temelkuran et al.[14] in 2002 for 10.6 μm wavelengths (where silica is not transparent).
These photonic crystal fibers operate on the same index-guiding principle as conventional optical fiber—however, they can have a much higher effective refractive index contrast between core and cladding, and therefore can have much stronger confinement for applications in nonlinear optical devices, polarization-maintaining fibers.
PCF can also be modified by coating the holes with sol-gels of similar or different index material to enhance the transmittance of light.
The term "photonic-crystal fiber" was coined by Philip Russell in 1995–1997 (he states (2003) that the idea dates to unpublished work in 1991).