This is possible because the compression and rarefaction of air by an acoustic wave changes the dielectric properties, producing partial reflection of the transmitted radar signal.
Thus, the speed of sound as a function of altitude can be measured, from which virtual temperature (TV) profiles can be calculated with appropriate corrections for vertical air motion.
When RASS is added to a radar profiler, three or four vertically pointing acoustic sources (equivalent to high quality stereo loud speakers) are placed around the radar wind profiler's antenna, and electronic subsystems are added that include the acoustic power amplifier and the signal generating circuit boards.
The acoustic sources are used only to transmit sound into the vertical beam of the radar, and are usually encased in noise suppression enclosures to minimize nuisance effects that may bother nearby neighbors or others in the vicinity of the instrument.
Because of atmospheric attenuation of the acoustic signals at the RASS frequencies used by boundary layer radar wind profilers, the altitude range that can be sampled is usually 0.1 to 1.5 kilometres (330 to 4,920 ft), depending on atmospheric conditions (e.g., high wind velocities tend to limit RASS altitude coverage to a few hundred meters because the acoustic signals are blown out of the radar beam).