Reciprocal innervation

René Descartes (1596–1650) was one of the first to conceive a model of reciprocal innervation (in 1626) as the principle that provides for the control of agonist and antagonist muscles.

This reciprocal innervation occurs so that the contraction of a muscle results in the simultaneous relaxation of its corresponding antagonist.

A common example of reciprocal innervation, is the effect of the nociceptive (or nocifensive) reflex, or defensive response to pain, otherwise commonly known as the withdrawal reflex; a type of involuntary action of the body to remove the body part from the vicinity of an offending object by contracting the appropriate muscles (usually flexor muscles), while relaxing the extensor muscles, allowing smooth movement.

The concept of reciprocal innervation as applicable to the eye is also known as Sherrington's law (after Charles Scott Sherrington), wherein increased innervation to an extraocular muscle is accompanied by a simultaneous decrease in innervation to its specific antagonist, such as the medial rectus and the lateral rectus in the case of an eye looking to one side of the midline.

[1] The significance of Descartes’ Law of Reciprocal Innervation has been additionally highlighted by recent research and applications of bioengineering concepts, such as optimal control and quantitative models of the motor impulses sent by the brain to control eye motion.