In mathematics, the Stein–Strömberg theorem or Stein–Strömberg inequality is a result in measure theory concerning the Hardy–Littlewood maximal operator.
The result is foundational in the study of the problem of differentiation of integrals.
The result is named after the mathematicians Elias M. Stein and Jan-Olov Strömberg.
Let λn denote n-dimensional Lebesgue measure on n-dimensional Euclidean space Rn and let M denote the Hardy–Littlewood maximal operator: for a function f : Rn → R, Mf : Rn → R is defined by where Br(x) denotes the open ball of radius r with center x.
Thus, the Stein–Strömberg theorem is the statement that the Hardy–Littlewood maximal operator is of strong type (p, p) uniformly with respect to the dimension n.