It uses 7000 G-code machine codes, 350 12 mm layers and 150 km of extrusion from the printer arms, for an average consumption of less than 6 kW (total printing output of ~1200 kWh).
[6] Data and projections indicate an increasing relevance of buildings that are both low-cost and sustainable, notably that, according to a 2020 UN report, building and construction are responsible for ~38% of all energy-related carbon dioxide emissions,[9] that, partly due to global warming,[10][11] migration crises are expected to intensify in the future and that the UN estimates that by 2030, ~3 billion people or ~40% of the world's population will require access to accessible, affordable housing.
[1] Buildings like the Tecla prototype could be very cheap, well-insulated,[12] stable and weatherproof, climate-adaptable, customizable, get produced rapidly, require only very little easily learnable manual labor, mitigate carbon emissions from concrete, require less energy, reduce homelessness, help enable intentional communities such as autonomous eco-communities,[4][6] and enable the provision of housing for victims of natural disasters as well as – via knowledge- and technology-transfer to local people – for emigrants[13] to Europe near their homes, rather than controversially in distant countries.
Disadvantages of printing with clay-mixtures include height-limitations or horizontal space requirements, latencies due to having to let the mixture dry with current processes, and other problems related to the novelty of the product such as their connection to plumbing systems.
[1][3] While they are unlikely to be relevant for solutions to overpopulation crises such as in China,[5][1] their early implementations may tend to enable societal innovation through autark communities and displacement- and migration-relief via use by citizens of African and Middle Eastern countries.