Ulam–Warburton automaton

The Ulam–Warburton cellular automaton (UWCA) is a 2-dimensional fractal pattern that grows on a regular grid of cells consisting of squares.

The automaton is named after the Polish-American mathematician and scientist Stanislaw Ulam[1] and the Scottish engineer, inventor and amateur mathematician Mike Warburton.

[2][3] The UWCA is a 2D 5-neighbor outer totalistic cellular automaton using rule 686.

[4] The number of cells turned ON in each iteration is denoted

is the Hamming weight function which counts the number of 1's in the binary expansion of

The total number of cells turned ON is denoted

This surjective property emerges from the simple rule of growth – a new cell is born if it shares only one-edge with an existing ON cell - the process appears disorderly and is modeled by functions involving

has fractal-like behavior with a sharp upper bound for

[7] We have The lower limit was obtained by Robert Price (OEIS sequence A261313 ) and took several weeks to compute and is believed to be twice the lower limit of

[8] The Hexagonal-Ulam–Warburton cellular automaton (Hex-UWCA) is a 2-dimensional fractal pattern that grows on a regular grid of cells consisting of hexagons.

The same growth rule for the UWCA applies and the pattern returns to a hexagon in generations

The UWCA has two reflection lines that pass through the corners of the initial cell dividing the square into four quadrants, similarly the Hex-UWCA has three reflection lines dividing the hexagon into six sections and the growth rule follows the symmetries.

Cells whose centers lie on a line of reflection symmetry are never born.

The Sierpinski triangle appears in 13th century Italian floor mosaics.

is a single triangle, then like the UWCA and the Hex-UWCA it returns to its starting shape, in generations

The toothpick pattern is constructed by placing a single toothpick of unit length on a square grid, aligned with the vertical axis.

At each subsequent stage, for every exposed toothpick end, place a perpendicular toothpick centred at that end.

The resulting structure has a fractal-like appearance.

The toothpick and UWCA structures are examples of cellular automata defined on a graph and when considered as a subgraph of the infinite square grid the structure is a tree.

The toothpick sequence returns to its base rotated ‘H’ shape in generations

A subtraction game called LIM, in which two players alternately modify three piles of tokens by taking an equal amount of tokens from two of the piles and adding the same amount to the third pile, has a set of winning positions that can be described using the Ulam–Warburton automaton.

[9][10] The beginnings of automata go back to a conversation Ulam had with Stanislaw Mazur in a coffee house in Lwów Poland when Ulam was twenty in 1929.

[11] Ulam worked with John von Neumann during the war years when they became good friends and discussed cellular automaton.

Von Neumann’s used these ideas in his concept of a universal constructor and the digital computer.

Ulam focussed on biological and ‘crystal like’ patterns publishing a sketch of the growth of a square based cell structure using a simple rule in 1962.

Mike Warburton is an amateur mathematician working in probabilistic number theory who was educated at George Heriot's School in Edinburgh.

His son's mathematics GCSE coursework involved investigating the growth of equilateral triangles or squares in the Euclidean plane with the rule – a new generation is born if and only if connected to the last by only one-edge.

That coursework concluded with a recursive formula for the number of ON cells born in each generation.

Later, Warburton found the sharp upper bound formula which he wrote up as a note in the Open University’s M500 magazine in 2002.

David Singmaster read the article, analysed the structure and named the object the Ulam-Warburton cellular automaton in his 2003 article.

The first twenty iterations of the Ulam-Warburton cellular automaton
Total number of ON cells in the Ulam–Warburton CA and quadratics and
Total number of ON cells in the Ulam–Warburton cellular automaton
Upper and lower bounds of
Hex-Ulam-Warburton cellular automaton - generation 11
Sierpinski triangle - generation 16
Toothpick sequence - generation 13