[6] On 2 November 2018, two independent teams of astronomers both concluded that the AT 2018cow event was "either a newly formed black hole in the process of accreting matter, or the frenetic rotation of a neutron star.
[29][32] On 2 July 2018, astronomers, using the Fermi Large Area Telescope (LAT), reported that there were no significant >100 MeV gamma-ray emissions between 19–26 June 2018.
[35] Moreover, astronomers on 3 July 2018 reported, using the MAXI GSC detector aboard the ISS, that no significant X-ray emissions were detected between 11–21 June 2018.
[40] VLBI observations at 22 GHz, with the NRAO, using the VLBA and Effelsberg radio telescopes, found a total flux density of ~5 mJy around 8 July 2018 at a reportedly more accurate (but consistent within uncertainties) astrometric location of AT2018cow (RA=16h 16m 00.2242s, DEC=22d 16' 04.890") than that of e-MERLIN.
[41] On 6 August 2018, ultraviolet observations of the AT 2018cow location, using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST), detected brightness (Vega mag) of about 19 on all four bands (F218W, F225W, F275W, F336W) studied.
[44] According to astronomers at the time of its discovery, the explosion, with a surface temperature of over 8,900 °C (16,000 °F; 9,200 K) and traveling 20,000 km/s (12,000 mi/s),[19] may have been a cataclysmic variable star (CV), gamma-ray burst (GRB), gravitational wave (GW), supernova (SN), or something else.
[48] However, according to astronomer Shubham Srivastav, associated with the 2.0 m (79 in) Himalayan Chandra Telescope (HCT): "Although spectroscopic features indicate a tentative similarity with broad line Ic supernovae, its true nature remains a puzzle.
[49] As of 29 September 2018, AT 2018cow has been explained in various ways, including as a type Ic supernova, a gamma-ray burst, an interaction between a white dwarf and black hole, and as a magnetar.
[50] On 2 November 2018, two independent teams of astronomers both concluded that the AT 2018cow event was "either a newly formed black hole in the process of accreting matter, or the frenetic rotation of a neutron star.
"[7][8][9][10] In January 2019, Anna Ho of the California Institute of Technology in Pasadena, who conducted observations with the Submillimeter Array on Mauna Kea in Hawaii, noted that an unusually protracted period of continuing activity after the event was noticed, enabled more extensive study than typically afforded during such events, allowing observation of it while it was brightening.