An aquamelt is a naturally hydrated polymeric material that is able to solidify at environmental temperatures through a controlled stress input (be it mechanical or chemical).
They are unique in being able to “lock in” work applied to them through an alteration in hydrogen bonding, which enables them to be processed with approximately 1000 times less energy than standard polymers.
[3][4] Aquamelts were defined as a new class of polymeric material as a result of a comparison between the spinning feedstock of the Chinese silkworm (Bombyx mori) and molten high-density polyethylene (HDPE)[2] using shear induced polarised light imaging (SIPLI).
[3][4] Much like an individual polymer chain in a melt, a native protein and its closely bound water molecules may be considered not as a solution but as a single processable entity, a nanocomposite termed an "aquamelt".
Thirdly work calculations performed on silk and high-density polyethylene feedstocks revealed a tenfold difference in the amount of shear energy required in order to initiate solidification.