Walker's son-in-law later brought the claw to the Natural History Museum of London, where it was examined by the palaeontologists Alan J. Charig and Angela C. Milner, who identified it as belonging to a theropod dinosaur.
[14] In 1999, a postorbital, squamosal, tooth, vertebral remains, metacarpals (hand bones), and a phalanx from the Salas de los Infantes deposit in Burgos Province, Spain, were attributed to an immature Baryonyx (though some of these elements are unknown in the holotype) by the palaeontologist Carolina Fuentes Vidarte and colleagues.
[27] Barker and colleagues stated that the recognition of the Wessex Formation specimens as new genera renders the presence of Baryonyx there ambiguous, and most of the previously assigned isolated material from the Wealden Supergroup is therefore indeterminate.
[26] A 2023 study of an isolated tooth by Barker and colleagues found that it and other teeth from the Wealden Supergroup that have previously been assigned to Baryonyx probably do not belong to the genus, based on their morphology and age.
[7][29] The type species of Suchosaurus, S. cultridens, was named by the biologist Richard Owen in 1841, based on teeth discovered by the geologist Gideon A. Mantell in Tilgate Forest, Sussex.
In 2007, the palaeontologist Éric Buffetaut considered the teeth of S. girardi very similar to those of Baryonyx (and S. cultridens) except for the stronger development of the tooth crown flutes (or "ribs"; lengthwise ridges), suggesting that the remains belonged to the same genus.
[28] In 1997, Charig and Milner noted that two fragmentary spinosaurid snouts from the Elrhaz Formation of Niger (reported by the palaeontologist Philippe Taquet in 1984) were similar enough to Baryonyx that they considered them to belong to an indeterminate species of the genus (despite their much younger Aptian geological age).
[7] In a 2004 conference abstract, Hutt and Newberry supported the synonymy based on a large theropod vertebra from the Isle of Wight which they attributed to an animal closely related to Baryonyx and Suchomimus.
[18][36][37][38][39] A 2017 review paper by the palaeontologist Carlos Roberto A. Candeiro and colleagues stated that this debate was more in the realm of semantics than science, as it is generally agreed that B. walkeri and S. tenerensis are distinct, related species.
The fact that elements of the skull and vertebral column of the B. walkeri holotype specimen (NHM R9951) do not appear to have co-ossified (fused) suggests that the individual was not fully grown, and the mature animal may have been much larger (as is the case for some other spinosaurids).
[3][42][45] Sereno and colleagues suggested that some of Baryonyx's cranial bones had been misidentified by Charig and Milner, resulting in the occiput being reconstructed as too deep, and that the skull was instead probably as low, long and narrow as that of Suchomimus.
Like in other theropods, the skeleton of Baryonyx showed skeletal pneumaticity, reducing its weight through fenestrae (openings) in the neural arches and pleurocoels (hollow depressions) in the centra (primarily near the transverse processes).
One isolated dorsal neural spine was moderately elongated and slender, indicating that Baryonyx may have had a hump or ridge along the centre of its back (though incipiently developed compared to those of other spinosaurids).
The humerus was short and stout, with its ends broadly expanded and flattened—the upper side for the deltopectoral crest and muscle attachment and the lower for articulation with the radius and ulna.
[1] In 1988, the palaeontologist Gregory S. Paul agreed with Taquet that Spinosaurus, described in 1915 based on fragmentary remains from Egypt that were destroyed in World War II, and Baryonyx were similar and (due to their kinked snouts) possibly late-surviving dilophosaurs.
[6] In 1997, they agreed that Baryonychidae and Spinosauridae were related, but disagreed that the former name should become a synonym of the latter, because the completeness of Baryonyx compared to Spinosaurus made it a better type genus for a family, and because they did not find the similarities between the two significant enough.
[50] They shared features such as long, narrow, crocodile-like skulls; sub-circular teeth, with fine to no serrations; the terminal rosette of the snout; and a secondary palate that made them more resistant to torsion.
[26] In 1986, Charig and Milner suggested that its elongated snout with many finely serrated teeth indicated that Baryonyx was piscivorous (fish-eating), speculating that it crouched on a riverbank and used its claw to gaff fish out of the water (similar to the modern grizzly bear).
It contained the first evidence of piscivory in a theropod dinosaur, acid-etched scales and teeth of the common fish Scheenstia mantelli (then classified in the genus Lepidotes[57]), and abraded or etched bones of a young iguanodontid.
They also presented circumstantial evidence for piscivory, such as crocodile-like adaptations for catching and swallowing prey: long, narrow jaws with their "terminal rosette", similar to those of a gharial, and the downturned tip and notch of the snout.
In their view, these adaptations suggested that Baryonyx would have caught small to medium-sized fish in the manner of a crocodilian: gripping them with the notch of the snout (giving the teeth a "stabbing function"), tilting the head backwards, and swallowing them headfirst.
[60] A 2007 finite element analysis of CT scanned snouts by the palaeontologist Emily J. Rayfield and colleagues indicated that the biomechanics of Baryonyx were most similar to those of the gharial and unlike those of the American alligator and more-conventional theropods, supporting a piscivorous diet for spinosaurids.
[8] In a 2014 conference abstract, the palaeontologist Danny Anduza and Fowler pointed out that grizzly bears do not gaff fish out of the water as was suggested for Baryonyx, and also ruled out that the dinosaur would not have darted its head like herons, since the necks of spinosaurids were not strongly S-curved, and their eyes were not well-positioned for binocular vision.
[62] A 2023 study by Barker and colleagues based on CT scans of the braincases of Baryonyx and Ceratosuchops found that the brain anatomy of these baryonychines was similar to that of other non-maniraptoriform theropods.
Their neurosensory capabilities such as hearing and olfaction (sense of smell) were unexceptional, and their gaze stabilisation less developed than those of spinosaurines, so their behavioural adaptations were probably comparable to those of other large-bodied terrestrial theropods.
[63] In their original description, Charig and Milner did not consider Baryonyx to be aquatic (due to its nostrils being on the sides of its snout—far from the tip—and the form of the post-cranial skeleton), but thought it was capable of swimming, like most land vertebrates.
The authors also pointed out that (like other theropods) there was no reason to believe that the forelimbs of Baryonyx were able to pronate (crossing the radius and ulna bones of the lower arm to turn the hand), and thereby make it able to rest or walk on its palms.
[76][77] Other dinosaurs from the Wessex Formation of the Isle of Wight where Baryonyx may have occurred include the theropods Riparovenator, Ceratosuchops, Neovenator, Eotyrannus, Aristosuchus, Thecocoelurus, Calamospondylus, and Ornithodesmus; the ornithopods Iguanodon, Hypsilophodon, and Valdosaurus; the sauropods Ornithopsis, Eucamerotus, and Chondrosteosaurus; and the ankylosaur Polacanthus.
[78][26] Barker and colleagues stated in 2021 that the identification of the two additional spinosaurids from the Wealden Supergroup, Riparovenator and Ceratosuchops, has implications for potential ecological separation within Spinosauridae if these and Baryonyx were contemporary and interacted.
[26] It is generally thought that large predators occur with small taxonomic diversity in any area due to ecological demands, yet many Mesozoic assemblages include two or more sympatric theropods that were comparable in size and morphology, and this also appears to have been the case for spinosaurids.