Carboniferous

[10] Stegocephalia (four-limbed vertebrates including true tetrapods), whose forerunners (tetrapodomorphs) had evolved from lobe-finned fish during the preceding Devonian period, became pentadactylous during the Carboniferous.

[16] In 1975, the ICS formally ratified the Carboniferous System, with the Mississippian and Pennsylvanian subsystems from the North American timescale, the Tournaisian and Visean stages from the Western European and the Serpukhovian, Bashkirian, Moscovian, Kasimovian and Gzhelian from the Russian.

[19][16] The ICS subdivisions from youngest to oldest are as follows:[20] The Mississippian was proposed by Alexander Winchell in 1870 named after the extensive exposure of lower Carboniferous limestone in the upper Mississippi River valley.

The GSSP for the base of the Carboniferous System, Mississippian Subsystem and Tournaisian Stage is located at the La Serre section in Montagne Noire, southern France.

[16] Work is underway in the Urals and Nashui, Guizhou Province, southwestern China for a suitable site for the GSSP with the proposed definition for the base of the Serpukhovian as the first appearance of conodont Lochriea ziegleri.

[16] The first appearance of the conodonts Declinognathodus donetzianus or Idiognathoides postsulcatus have been proposed as a boundary marking species and potential sites in the Urals and Nashui, Guizhou Province, southwestern China are being considered.

Falling sea levels exposed large tracts of the continental shelves across which river systems eroded channels and valleys and vegetation broke down the surface to form soils.

[25] During the Pennsylvanian, vast amounts of organic debris accumulated in the peat mires that formed across the low-lying, humid equatorial wetlands of the foreland basins of the Central Pangean Mountains in Laurussia, and around the margins of the North and South China cratons.

[26][27] However, significant Mesozoic and Cenozoic coal deposits formed after lignin-digesting fungi had become well established, and fungal degradation of lignin may have already evolved by the end of the Devonian, even if the specific enzymes used by basidiomycetes had not.

[25] The second theory is that the geographical setting and climate of the Carboniferous were unique in Earth's history: the co-occurrence of the position of the continents across the humid equatorial zone, high biological productivity, and the low-lying, water-logged and slowly subsiding sedimentary basins that allowed the thick accumulation of peat were sufficient to account for the peak in coal formation.

[31] The orogeny was caused by a series of continental collisions between Laurussia, Gondwana and the Armorican terrane assemblage (much of modern-day Central and Western Europe including Iberia) as the Rheic Ocean closed and Pangea formed.

[29] The resulting Variscan orogeny involved a complex series of oblique collisions with associated metamorphism, igneous activity, and large-scale deformation between these terranes and Laurussia, which continued into the Carboniferous.

[28] Towards the end of the Carboniferous, extension and rifting across the northern margin of Gondwana led to the breaking away of the Cimmerian terrane during the early Permian and the opening of the Neo-Tethys Ocean.

Continental arc magmatism continued into the late Carboniferous and extended round to connect with the developing proto-Andean subduction zone along the western South American margin of Gondwana.

The South Tian Shan fold and thrust belt, which extends over 2,000 km from Uzbekistan to northwest China, is the remains of this accretionary complex and forms the suture between Kazakhstania and Tarim.

[36] Following this, a reduction in atmospheric CO2 levels, caused by the increased burial of organic matter and widespread ocean anoxia led to climate cooling and glaciation across the south polar region.

[37] During the Visean Warm Interval glaciers nearly vanished retreating to the proto-Andes in Bolivia and western Argentina and the Pan-African mountain ranges in southeastern Brazil and southwest Africa.

[38] Warmer periods with reduced ice volume within the Bashkirian, the late Moscovian and the latest Kasimovian to mid-Gzhelian are inferred from the disappearance of glacial sediments, the appearance of deglaciation deposits and rises in sea levels.

Widespread glacial deposits are found across South America, western and central Africa, Antarctica, Australia, Tasmania, the Arabian Peninsula, India, and the Cimmerian blocks, indicating trans-continental ice sheets across southern Gondwana that reached to sea-level.

[23] The oscillating climate conditions also led to repeated restructuring of Laurasian tropical forests between wetlands and seasonally dry ecosystems,[38] and the appearance and diversification of tetrapods species.

[37] These changes in seawater geochemistry are interpreted as a decrease in atmospheric CO2 due to increased organic matter burial and widespread ocean anoxia triggering climate cooling and onset of glaciation.

[37] The Mississippian-Pennsylvanian boundary positive δ18O excursion occurred at the same time as global sea level falls and widespread glacial deposits across southern Gondwana, indicating climate cooling and ice build-up.

[47] The resulting reduction in productivity and burial of organic matter led to increasing atmospheric CO2 levels, which were recorded by a negative δ13C excursion and an accompanying, but smaller decrease in δ18O values.

The large spindle-shaped genus Fusulina and its relatives were abundant in what is now Russia, China, Japan, North America; other important genera include Valvulina, Endothyra, Archaediscus, and Saccammina (the latter common in Britain and Belgium).

Ostracoda, a class of crustaceans, were abundant as representatives of the meiobenthos; genera included Amphissites, Bairdia, Beyrichiopsis, Cavellina, Coryellina, Cribroconcha, Hollinella, Kirkbya, Knoxiella, and Libumella.

[48] Freshwater Carboniferous invertebrates include various bivalve molluscs that lived in brackish or fresh water, such as Anthraconaia, Naiadites, and Carbonicola; diverse crustaceans such as Candona, Carbonita, Darwinula, Estheria, Acanthocaris, Dithyrocaris, and Anthrapalaemon.

Further groups are the Syntonopterodea (relatives of present-day mayflies), the abundant and often large sap-sucking Palaeodictyopteroidea, the diverse herbivorous Protorthoptera, and numerous basal Dictyoptera (ancestors of cockroaches).

[64] As a result of the evolutionary radiation Carboniferous holocephalans assumed a wide variety of bizarre shapes including Stethacanthus which possessed a flat brush-like dorsal fin with a patch of denticles on its top.

Some Carboniferous amphibians were aquatic and lived in rivers (Loxomma, Eogyrinus, Proterogyrinus); others may have been semi-aquatic (Ophiderpeton, Amphibamus, Hyloplesion) or terrestrial (Dendrerpeton, Tuditanus, Anthracosaurus).

[70] The gap saw the demise of the Devonian fish-like ichthyostegalian labyrinthodonts and the rise of the more advanced temnospondylian and reptiliomorphan amphibians that so typify the Carboniferous terrestrial vertebrate fauna.

Chart of regional subdivisions of the Carboniferous Period
A cliff with pale grey beds of limestone overlain by orange sandstone, above which are more pale grey mudstones and limestones. A large fracture in the limestone is filled by a bulbous extension of the sandstone down into the limestone.
Cliff section through the Serpukhovian Red Wharf Limestone Formation, Wales . A marine limestone at the base of the cliff is overlain by an orange-coloured fluvial sandstone. Subaerial exposure of the limestone during a period of falling sea level resulted in the formation of a karstic surface, which has then been infilled by the river sands. A thin, estuarine silty mudstone overlays the sandstone, which in turn is overlain by a second marine limestone.
Photo of a road cutting through a thick and repeating sequence of pale grey to black rock strata.
Hyden Formation over Pikeville Formation in the Pennsylvanian of Kentucky, US. The exposure has Pennsylvanian-aged cyclothemic sedimentary rocks of the Breathitt Group. The upper part of the roadcut is Hyden Formation, consisting of mixed siliciclastics and coal. The lower part is Pikeville Formation, also having mixed siliciclastics and coal.
Palaeogeographic map showing Gondwana in the southern hemisphere with ice sheets across its polar regions. Laurussia is across the equator. Siberia, Kazakhstania, North China and South China lay to the northeast separated from Gondwana and Laurussia by the Palaeotethys Ocean. Much of the northern hemisphere is covered by the Panthalassic Ocean.
Approximate positions of the continents in the early Carboniferous (c. 348 Ma). AM. Amuria; AN. Annamia; AT. Alexander terrane; ATA. Armorican terrane Assemblage; K. Kazakhstania; MO. Mongol-Okhotsk Ocean; NC. North China; OuO. Ouachita orogen; SC. South China; SP. South Patagonia; T. Tarim; UrO. Uralian orogen; VaO. Variscan orogen; YTQ. Yukon-Tanana and Quesnellia terranes. Plate boundaries: red – subduction; white – ridges; yellow – transform. [ 29 ] [ 30 ]
Palaeogeographic map showing Gondwana, Laurussia and Siberia now joined to form the supercontinent of Pangea. North China and South China lay to the northeast separated from Pangea by the Palaeotethys Ocean. Much of the northern hemisphere is covered by the Panthalassic Ocean.
Approximate positions of the continents in the late Carboniferous (c. 302 Ma). AM. Amuria; AN. Annamia; AT. Alexander terrane; K. Kazakhstania; MO. Mongol-Okhotsk Ocean; NC. North China; PA. Paleoasian Ocean; SC. South China; SA. Slide Mountain-Angayucham Ocean; T. Tarim; YTQ. Yukon-Tanana and Quesnellia terranes. Plate boundaries: red – subduction; white – ridges; yellow – transform. [ 29 ] [ 30 ]
Picture of a large reptile with a sail along its back in a swampy forest setting.
A reconstruction of life on a forest floor during the Pennsylvanian Period. The animal is Edaphosaurus , a synapsid. Plants are the seed ferns Neuropteris and Pectopteris , the club mosses Lepidodendron and Sigillaria , other plants include Cordaites , Calamites , climbing ferns, pond algae, and Sphenophyllum .
Etching depicting some of the most significant plants of the Carboniferous
Ancient in situ lycopsid , probably Sigillaria , with attached stigmarian roots , Joggins Formation , Canada
Base of a lycopsid showing connection with bifurcating stigmarian roots