Crystal plasticity is a mesoscale computational technique that takes into account crystallographic anisotropy in modelling the mechanical behaviour of polycrystalline materials.
Hence, it can be used to predict not just the stress-strain response of a material, but also the texture evolution, micromechanical field distributions, and regions of strain localisation.
[2] The two widely used formulations of crystal plasticity are the one based on the finite element method known as Crystal Plasticity Finite Element Method (CPFEM),[3] which is developed based on the finite strain formulation for the mechanics, and a spectral formulation which is more computationally efficient due to the fast Fourier transform, but is based on the small strain formulation for the mechanics.
Since the applied deformation occurs in the macroscopic sample reference frame and slip occurs in the single crystal reference frame, in order to consistently apply the constitutive relations, an orientation map (e.g. using Bunge Euler angles) is required for each grain in the polycrystal.
Further, by keeping track of the accumulated strain, the critical resolved shear stress is updated according to various hardening models (e.g. Voce hardening law), and this recovers the observed macroscopic stress-strain response for the material.