In mathematics, informally speaking, Euclid's orchard is an array of one-dimensional "trees" of unit height planted at the lattice points in one quadrant of a square lattice.
[1] More formally, Euclid's orchard is the set of line segments from (x, y, 0) to (x, y, 1), where x and y are positive integers.
The trees visible from the origin are those at lattice points (x, y, 0), where x and y are coprime, i.e., where the fraction x/y is in reduced form.
The name Euclid's orchard is derived from the Euclidean algorithm.
If the orchard is projected relative to the origin onto the plane x + y = 1 (or, equivalently, drawn in perspective from a viewpoint at the origin) the tops of the trees form a graph of Thomae's function.