Gary E. Martin

He developed new methods for the acquisition of submicromole and sub-nanomole NMR data for molecular structure characterization, especially work involving inverse-detected heteronuclear shift correlation techniques.

[9] He also collaborated on the development of a new generation of sub-micro inverse detection probes with Nalorac Cryogenics Corporation designed to allow heteronuclear shift correlation experiments to be performed at levels down to 0.01 μmole for small molecules.

During his time at Merck he has continued to explore the limits of detection for low level samples by heteronuclear 2D NMR using newly developed 1.7 mm Micro CryoProbe™ technology.

He has developed, in collaboration with ACD/Labs, and Bruker, unsymmetrical indirect covariance NMR spectroscopy,[10][11][12] exploring the calculation of hyphenated heteronuclear 2D correlation spectra.

He was among the first to exploit natural abundance long-range 1H-15N heteronuclear shift correlation experiments, those early reports leading to hundreds of published reports that are the subject of multiple reviews and chapters.,[18][19] More recently, his research interests have also led to the development of unsymmetrical indirect covariance NMR processing methods that have the potential for significant spectrometer time savings when experimental access to hyphenated 2D NMR.

These methods also provide access to 13C-15N Heteronuclear Single Quantum Coherence-Heteronuclear Multiple Bond Coherence (HSQC-HMBC) correlation data that are experimentally inaccessible at natural abundance, and to HSQC-ADEQUATE correlation plots that allow carbon-carbon connectivity networks of molecules to be mapped without having to resort to the highly insensitive 13C-13C INADEQUATE experiment.