Indole-3-carbinol (I3C, C9H9NO) is produced by the breakdown of the glucosinolate glucobrassicin, which can be found at relatively high levels in cruciferous vegetables such as broccoli, cabbage, cauliflower, brussels sprouts, collard greens and kale.
A recent review of the biomedical research literature found that "evidence of an inverse association between cruciferous vegetable intake and breast or prostate cancer in humans is limited and inconsistent" and "larger randomized controlled trials are needed" to determine if supplemental indole-3-carbinol has health benefits.
[7] Investigation of mechanisms by which consumption of indole-3-carbinol might influence cancer incidence focuses on its ability to alter estrogen metabolism and other cellular effects.
The first direct evidence of pure anti-initiating activity by a natural anticarcinogen (indole-3-carbinol) found in human diet was claimed by Dashwood et al. in 1989.
Kim et al. (2011) showed that the master regulator of melanoma biology, microphthalmia-associated transcription factor (MITF-M) was downregulated by indole-3-carbinol to induce apoptosis.
Kundu et al.[citation needed] further showed that inhibition of BRAF V600E activity by indole-3-carbinol resulted in downregulation of MITF-M by downstream signaling which caused a G1 cell cycle arrest leading to the observed antiproliferative effect.
Overall scientific evidence shows that in melanoma, indole-3-carbinol specifically inhibits the two most commonly associated driver mutation signaling pathways to cause proliferation, a fact that can be used to design clinical trial to treat human patients with indole-3-carbinol in future.