John A. Quinn

In later work at Penn, he applied these insights to problems of engineering and biological significance involving chemical reaction and diffusion within and through both finely porous and reactive membranes.

This very fundamental problem also engaged such contemporaries as Sherwood at M.I.T., Pigford and his then-student Scriven at Delaware, Danckwerts in the U.K., and Levich in the U.S.S.R. Quinn and his students distinguished themselves by fashioning a number of elegant experimental systems (e.g., the moving-band absorber[8]) capable of producing the very “young” or fresh interfaces at which it was possible to probe interfacial mass transfer resistances associated with gas-liquid and liquid- liquid transport.

[9] These endeavors would ultimately expand to include exploration of the role of insoluble stagnant films at interfaces and of transport-induced convective instabilities arising on either side of them.

[11] Using this experimental platform to validate their analysis, Quinn and his student John L. Anderson developed and solved the fundamental hydrodynamic equations governing hindered diffusion of species (incorporating the effects of both steric exclusion and Brownian motion) in nanometer- and sub-micron pores in a way that avoided the restrictive assumptions necessary in prior (and simpler) treatments of this problem.

[12] This body of work would later expand to include analysis of electrodynamic/electrokinetic effects of various microsolutes, macromolecules, and colloids as they diffused across and/or adsorbed to the walls of neutral and electrically charged membrane pores.

[15] In 1984 one of Quinn’s former students, Stephen Matson, co-founded Sepracor Inc. to commercialize this research and apply the technology to the manufacture of the calcium channel blocker diltiazem.