[2] She was elected to the US National Academy of Sciences in 2003 for this work and her contributions generally to our understanding of receptor-based signaling in plants.
Nasrallah, in collaboration with Mikhail Nasrallah, also a member of the faculty at Cornell University, initiated a research program in plant reproduction aimed at understanding the highly specific cell-cell interactions between pollen and pistil (the female reproductive structure) that ultimately lead either to successful pollination and seed production or to inhibition of pollen tube growth and failure to set seed.
In essence, self-incompatibility mechanisms are highly specific self/nonself mate recognition systems which confer on cells of the pistil the ability to discriminate between pollen grains that are defined as “self” and “nonself” on the basis of genetic identity at self-incompatibility loci, resulting in specific inhibition of “self” pollen.
[9] Not only did this successful experiment provide proof that the SRK and SCR genes are the sole determinants of self-incompatibility specificity, but it also opened novel avenues of research.
The introduction of several SI specificities into A. thaliana[10] allowed in planta functional analysis of in vitro-generated receptor and ligand variants and identification of the specific amino-acid residues responsible for productive SRK-SCR interactions,[11] results that were confirmed by high-resolution structural analysis of the SRK-SCR complex in Jijie Chai’s laboratory.