Lady Windermere's Fan (mathematics)

In mathematics, Lady Windermere's Fan is a telescopic identity employed to relate global and local error of a numerical algorithm.

The name is derived from Oscar Wilde's 1892 play Lady Windermere's Fan, A Play About a Good Woman.

(

τ ,

t

0

t

0

)

{\displaystyle E(\ \tau ,t_{0},y(t_{0})\ )}

be the exact solution operator so that: with

0

denoting the initial time and

y ( t )

the function to be approximated with a given

y (

0

{\displaystyle y(t_{0})}

.

be the numerical approximation at time

can be attained by means of the approximation operator

so that: The approximation operator represents the numerical scheme used.

For a simple explicit forward Euler method with step width

Euler

{\displaystyle \Phi _{\text{Euler}}(\ h,t_{n-1},y(t_{n-1})\ )\ y_{n-1}=(1+h{\frac {d}{dt}})\ y_{n-1}}

The local error

is then given by: In abbreviation we write: Then Lady Windermere's Fan for a function of a single variable

writes as:

with a global error of

{\displaystyle {\begin{aligned}y_{N}-y(t_{N})&{}=y_{N}-\underbrace {\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})+\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})} _{=0}-y(t_{N})\\&{}=y_{N}-\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})+\underbrace {\sum _{n=0}^{N-1}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ y(t_{n})-\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ y(t_{n})} _{=\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})-\sum _{n=N}^{N}\left[\prod _{j=n}^{N-1}\Phi (h_{j})\right]\ y(t_{n})=\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})-y(t_{N})}\\&{}=\prod _{j=0}^{N-1}\Phi (h_{j})\ y_{0}-\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})+\sum _{n=1}^{N}\ \prod _{j=n-1}^{N-1}\Phi (h_{j})\ y(t_{n-1})-\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ y(t_{n})\\&{}=\prod _{j=0}^{N-1}\Phi (h_{j})\ (y_{0}-y(t_{0}))+\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\left[\Phi (h_{n-1})-E(h_{n-1})\right]\ y(t_{n-1})\\&{}=\prod _{j=0}^{N-1}\Phi (h_{j})\ (y_{0}-y(t_{0}))+\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ d_{n}\end{aligned}}}