The variables include all Model for End-Stage Liver Disease (MELD)'s components, as well as sodium, albumin, total cholesterol, white blood cell count, age, and length of stay.
In this approach, a feature selection machine learning algorithm observes a large collection of health records and identifies a small set of variables that could serve as the most efficient predictors for a given medical outcome.
[13] A study presented in June 2019 in Semana Digestiva[14] (Vilamoura, Portugal) demonstrated that MELD-Plus was superior to assess mortality at 180 days vs. other liver-related scores in a population admitted due to hepatic encephalopathy.
[15] A study published in April 2018 in Surgery, Gastroenterology and Oncology reported on the increased accuracy of using MELD-Plus vs. MELD in predicting early acute kidney injury after liver transplantation.
[21] United Network for Organ Sharing proposed that MELD-Na score (an extension of MELD) may better rank candidates based on their risk of pre-transplant mortality and is projected to save 50–60 lives total per year.
[26][27] A review published in Transplantation in February 2020 highlighted the importance of incorporating machine-learning techniques into liver-related prediction tools, especially within the context of the limited accuracy of MELD-Na when applied to patients with low scores.
[18] Chen & Asch 2017 wrote: "With machine learning situated at the peak of inflated expectations, we can soften a subsequent crash into a “trough of disillusionment” by fostering a stronger appreciation of the technology's capabilities and limitations."