Minimal residual method

The Minimal Residual Method or MINRES is a Krylov subspace method for the iterative solution of symmetric linear equation systems.

It was proposed by mathematicians Christopher Conway Paige and Michael Alan Saunders in 1975.

[1] In contrast to the popular CG method, the MINRES method does not assume that the matrix is positive definite, only the symmetry of the matrix is mandatory.

The GMRES method is essentially a generalization of MINRES for arbitrary matrices.

Both minimize the 2-norm of the residual and do the same calculations in exact arithmetic when the matrix is symmetric.

MINRES is a short-recurrence method with a constant memory requirement, whereas GMRES requires storing the whole Krylov space, so its memory requirement is roughly proportional to the number of iterations.

On the other hand, GMRES tends to suffer less from loss of orthogonality.

[1][2] The MINRES method iteratively calculates an approximate solution of a linear system of equations of the form

is a symmetric matrix and

For this, the norm of the residual

-dimensional Krylov subspace

More precisely, we define the approximate solutions

is the standard Euclidean norm on

, unlike in the GMRES method, it is possible to carry out this minimization process recursively, storing only two previous steps (short recurrence).

This saves memory.

Note: The MINRES method is more complicated than the algebraically equivalent Conjugate Residual method.

The Conjugate Residual (CR) method was therefore produced below as a substitute.

It differs from MINRES in that in MINRES, the columns of a basis of the Krylov space (denoted below by

) can be orthogonalized, whereas in CR their images (below labeled with

) can be orthogonalized via the Lanczos recursion.

There are more efficient and preconditioned variants with fewer AXPYs.

Compare with the article.

arbitrary and compute

is smaller than a specified tolerance, the algorithm is interrupted with the approximate solution

Otherwise, a new descent direction

In the case of positive definite matrices, the convergence rate of the MINRES method can be estimated in a way similar to that of the CG method.

[3] In contrast to the CG method, however, the estimation does not apply to the errors of the iterates, but to the residual.

is the condition number of matrix

{\displaystyle \kappa (A)={\frac {\left|\lambda _{\text{max}}(A)\right|}{\left|\lambda _{\text{min}}(A)\right|}},}

are maximal and minimal eigenvalues of

A comparison of the norm of error and residual in the CG method (blue) and the MINRES method (green). The matrix used comes from a 2D boundary-value problem .