Neuronal ceroid lipofuscinosis

Neuronal ceroid lipofuscinosis is a family of at least eight genetically separate neurodegenerative lysosomal storage diseases that result from excessive accumulation of lipopigments (lipofuscin) in the body's tissues.

The classic characterization of the group of neurodegenerative, lysosomal storage disorders called the neuronal ceroid lipofuscinoses (NCLs) is through the progressive, permanent loss of motor and psychological ability with a severe intracellular accumulation of lipofuscins,[2][3] with the United States and Northern European populations having slightly higher frequency with an occurrence of one in 10,000.

[4] Four classic diagnoses have received the most attention from researchers and the medical field, differentiated from one another by age of symptomatic onset, duration, early-onset manifestations such as blindness or seizures, and the forms which lipofuscin accumulation takes.

[5][6][7][8] Juvenile NCL (JNCL, Batten disease, or Spielmeyer-Vogt), with a prevalence of one in 100,000, usually arises between 4 and 10 years of age; the first symptoms include considerable vision loss due to retinal dystrophy, with seizures, psychological degeneration, and eventual death in the mid- to late 20s or 30s ensuing.

[citation needed] Childhood NCLs are generally autosomal recessive disorders; that is, they occur only when a child inherits two copies of the defective gene, one from each parent.

[5][6] Defective polypeptides, however, are unable to exit the endoplasmic reticulum (ER), most likely due to misfolding; further analyses of this pathway could serve to categorize INCL among lysosomal enzyme deficiencies.

The active ingredient in Brineura, cerliponase alfa, is intended to slow loss of walking ability in symptomatic pediatric patients 3 years of age and older with late infantile neuronal ceroid lipofuscinosis type 2 (CLN2), also known as TPP1 deficiency.

[24] Currently, no widely accepted treatment can cure, slow down, or halt the symptoms in the great majority of patients with NCL, but seizures may be controlled or reduced with use of antiepileptic drugs.

Preliminary results report the drug has completely cleared away storage material from the white blood cells of the first six patients, as well as slowing down the rapid neurodegeneration of infantile NCL.

[citation needed] A gene therapy trial using an adenoassociated virus vector called AAV2CUhCLN2 began in June 2004 in an attempt to treat the manifestations of late infantile NCL.

[26] In May 2008, the gene therapy given to the recipients reportedly was "safe, and that, on average, it significantly slowed the disease's progression during the 18-month follow-up period"[27] and "suggested that higher doses and a better delivery system may provide greater benefit".

[28] A second gene therapy trial for late infantile NCL using an adenoassociated virus derived from the rhesus macaque (a species of Old World monkey) called AAVrh.10 began in August 2010, and is once again being conducted by Weill Medical College of Cornell University.

[28] Animal models of late infantile NCL showed that the AAVrh.10 delivery system "was much more effective, giving better spread of the gene product and improving survival greatly".

[28] A third gene therapy trial, using the same AAVrh.10 delivery system, began in 2011 and has been expanded to include late infantile NCL patients with moderate tosevere impairment or uncommon genotypes, and uses a novel administration method that reduces general anesthesia time by 50% to minimize potential adverse side effects.

[37] The first probable instances of this condition were reported in 1826 in a Norwegian medical journal by Dr. Christian Stengel,[38][39][40][41] who described 4 affected siblings in a small mining community in Norway.

Around the same time, Walther Spielmeyer reported detailed studies on three siblings,[44] who have the Spielmeyer-Sjogren (juvenile) type, which led him to the very firm statement that this malady is not related to Tay–Sachs disease.

Subsequently, however, the pathomorphological studies of Károly Schaffer made these authors change their minds to the extent that they reclassified their respective observations as variants of Tay–Sachs disease, which caused confusion lasting about 50 years.

[46] Departing from the careful morphological observations of Spielmeyer, Hurst, and Sjovall and Ericsson, Zeman and Alpert made a determined effort to document the previously suggested pigmentary nature of the neuronal deposits in certain types of storage disorders.

[citation needed] Subsequently, Santavuori and Haltia showed that an infantile form of NCL exists,[50] which Zeman and Dyken had included with the Jansky Bielschowsky type.

Mannose-6-phosphate