Proteins currently known to belong to the Ni2+-Co2+ Transporter (NiCoT) family (TC# 2.A.52) can be found in organisms ranging from Gram-negative and Gram-positive bacteria to archaea and some eukaryotes.
Members of this family catalyze uptake of Ni2+ and/or Co2+ in a proton motive force-dependent process.
[1] These proteins range in size from about 300 to 400 amino acyl residues and possess 6, 7, or 8 transmembrane segments (TMSs), thought to result from an intragenic 4 TMS duplication, followed by a deletion of one or two TMSs in the cases of the 7 or 6 TMS proteins.
Topological analyses with the HoxN Ni2+ transporter of Ralstonia eutropha (Alcaligenes eutrophus) suggest that it possesses 8 TMSs with its N- and C-termini in the cytoplasm.
[2] In the Helicobacter pylori NixA homologue, several conserved motifs have been shown to be important for Ni2+ binding and transport.