Perfectly matched layer

A perfectly matched layer (PML) is an artificial absorbing layer for wave equations, commonly used to truncate computational regions in numerical methods to simulate problems with open boundaries, especially in the FDTD and FE methods.

Although both Berenger's formulation and UPML were initially derived by manually constructing the conditions under which incident plane waves do not reflect from the PML interface from a homogeneous medium, both formulations were later shown to be equivalent to a much more elegant and general approach: stretched-coordinate PML.

This viewpoint allows PMLs to be derived for inhomogeneous media such as waveguides, as well as for other coordinate systems and wave equations.

The coefficient σ/ω depends upon frequency—this is so the attenuation rate is proportional to k/ω, which is independent of frequency in a homogeneous material (not including material dispersion, e.g. for vacuum) because of the dispersion relation between ω and k. However, this frequency-dependence means that a time domain implementation of PML, e.g. in the FDTD method, is more complicated than for a frequency-independent absorber, and involves the auxiliary differential equation (ADE) approach (equivalently, i/ω appears as an integral or convolution in time domain).

However, the attenuation of evanescent waves can also be accelerated by including a real coordinate stretching in the PML: this corresponds to making σ in the above expression a complex number, where the imaginary part yields a real coordinate stretching that causes evanescent waves to decay more quickly.

One caveat with perfectly matched layers is that they are only reflectionless for the exact, continuous wave equation.

Once the wave equation is discretized for simulation on a computer, some small numerical reflections appear (which vanish with increasing resolution).

For this reason, the PML absorption coefficient σ is typically turned on gradually from zero (e.g. quadratically) over a short distance on the scale of the wavelength of the wave.

[1] In general, any absorber, whether PML or not, is reflectionless in the limit where it turns on sufficiently gradually (and the absorbing layer becomes thicker), but in a discretized system the benefit of PML is to reduce the finite-thickness "transition" reflection by many orders of magnitude compared to a simple isotropic absorption coefficient.

This occurs in "left-handed" negative index metamaterials for electromagnetism and also for acoustic waves in certain solid materials, and in these cases the standard PML formulation is unstable: it leads to exponential growth rather than decay, simply because the sign of k is flipped in the analysis above.

[11] Fortunately, there is a simple solution in a left-handed medium (for which all waves are backwards): merely flip the sign of σ.

[12][13] Unfortunately, even without exotic materials, one can design certain waveguiding structures (such as a hollow metal tube with a high-index cylinder in its center) that exhibit both backwards- and forwards-wave solutions at the same frequency, such that any sign choice for σ will lead to exponential growth, and in such cases PML appears to be irrecoverably unstable.

As a consequence, the PML approach is no longer valid (no longer reflectionless at infinite resolution) in the case of periodic media (e.g. photonic crystals or phononic crystals)[10] or even simply a waveguide that enters the boundary at an oblique angle.

A FDTD scheme for a light scattering problem. The striped borders correspond to perfectly matched layers, which are used to simulate open boundaries by absorbing the outgoing waves.
Absorption of a pulsed spherical wave through stretched coordinate PML in 2D FDTD method. The white border indicates the simulation boundary.