[7] Rockets may have been used as early as 1232, when reports appeared describing fire arrows and 'iron pots' that could be heard for 5 leagues (25 km, or 15 miles) when they exploded upon impact, causing devastation for a radius of 600 meters (2,000 feet), apparently due to shrapnel.
Internal-combustion rocket propulsion is mentioned in a reference to 1264, recording that the 'ground-rat,' a type of firework, had frightened the Empress-Mother Gongsheng at a feast held in her honor by her son the Emperor Lizong.
[10] Subsequently, rockets are included in the military treatise Huolongjing, also known as the Fire Drake Manual, written by the Chinese artillery officer Jiao Yu in the mid-14th century.
[12] The American historian Frank H. Winter proposed in The Proceedings of the Twentieth and Twenty-First History Symposia of the International Academy of Astronautics that southern China and the Laotian community rocket festivals might have been key in the subsequent spread of rocketry in the Orient.
[15] Between 1270 and 1280, Hasan al-Rammah wrote his al-furusiyyah wa al-manasib al-harbiyya (The Book of Military Horsemanship and Ingenious War Devices), which included 107 gunpowder recipes, 22 of which are for rockets.
[40]: 48 Mughal ban iron rockets were described by European visitors, including François Bernier who witnessed the 1658 Battle of Samugarh fought between brothers Aurangzeb and Dara Shikoh.
Evliya Çelebi purported that in 1633 Lagari launched in a 7-winged rocket using 50 okka (63.5 kg, or 140 lbs) of gunpowder from Sarayburnu, the point below Topkapı Palace in Istanbul.
In 1820 Zasyadko was appointed head of the Petersburg Armory, Okhtensky Powder Factory, pyrotechnic laboratory and the first Highest Artillery School in Russia.
These culminated in his 1819 report Notes sur les fusees incendiares (German edition: Erfahrungen über die Congrevischen Brand-Raketen bis zum Jahre 1819 in der Königlichen Polnischen Artillerie gesammelt, Weimar 1820).
The research took place in the Warsaw Arsenal, where captain Józef Kosiński also developed multiple-rocket launchers adapted from horse artillery gun carriage.
His work was essentially unknown outside the Soviet Union, but inside the country it inspired further research, experimentation and the formation of the Society for Studies of Interplanetary Travel in 1924.
A New York Times editorial suggested, referring to Newton's Third Law: That Professor Goddard, with his 'chair' in Clark College and the countenancing of the Smithsonian Institution, does not know the relation of action to reaction, and of the need to have something better than a vacuum against which to react – to say that would be absurd.
In 1923, German Hermann Oberth (1894–1989) published Die Rakete zu den Planetenräumen ("The Rocket into Planetary Space"), a version of his doctoral thesis, after the University of Munich had rejected it.
Rocketry in the Soviet Union began in 1921 with extensive work at the Gas Dynamics Laboratory (GDL), where the first test-firing of a solid fuel rocket was carried out in March 1928, which flew for about 1,300 meters[83] In 1931 the world's first successful use of rockets to assist take-off of aircraft were carried out on a U-1, the Soviet designation for an Avro 504 trainer, which achieved about one hundred successful assisted takeoffs.
[86] In September 1931 the Group for the Study of Reactive Motion (GIRD) was formed and was responsible for the first Soviet liquid propelled rocket launch, the GIRD-9, on 17 August 1933, which reached an altitude of 400 metres (1,300 ft).
[87] In 1933 GDL and GIRD were merged to form the Reactive Scientific Research Institute (RNII)[88] and developments were continued, including designing several variations for ground-to-air, ground-to-ground, air-to-ground and air-to-air combat.
[90] The earliest known use by the Soviet Air Force of aircraft-launched unguided anti-aircraft rockets in combat against heavier-than-air aircraft took place in August 1939, during the Battle of Khalkhin Gol.
On September 30, 1929, von Opel himself piloted the RAK.1, the world's first public manned rocket-powered flight from the Frankfurt-Rebstock airport, but experienced a hard landing.
When private rocket-engineering became forbidden in Germany, Sander was arrested by Gestapo in 1935, convicted of treason, sentenced to 5 years in prison, and forced to sell his company.
[101] In 1936, a British research programme based at Fort Halstead in Kent under the direction of Dr. Alwyn Crow started work on a series of unguided solid-fuel rockets that could be used as anti-aircraft weapons.
[111] By 1943, Germany began mass-producing the A-4 as the Vergeltungswaffe 2 ("Vengeance Weapon" 2, or more commonly, V2), a ballistic missile with a 320-kilometer (200 mi) range carrying a 1,130-kilogram (2,490 lb) warhead at 4,000 kilometers per hour (2,500 mph).
At the end of World War II, competing Russian, British, and US military and scientific crews raced to capture technology and trained personnel from the German rocket program at Peenemünde.
The US captured a large number of German rocket scientists, including von Braun, and brought them to the United States as part of Operation Paperclip.
[121] After the war, rockets were used to study high-altitude conditions, by radio telemetry of temperature and pressure of the atmosphere, detection of cosmic rays, and further research; notably the Bell X-1, the first manned vehicle to break the sound barrier.
The mystery was solved in the US in 1951 when H. Julian Allen and A. J. Eggers Jr. of the National Advisory Committee for Aeronautics (NACA) made the counterintuitive discovery that a blunt shape (high drag) permitted the most effective heat shield.
[126] Blunt body theory made possible the heat shield designs that were embodied in the Mercury, Gemini, Apollo, and Soyuz space capsules, enabling astronauts and cosmonauts to survive the fiery re-entry into Earth's atmosphere.
At the time the STS was being conceived, Maxime Faget, the Director of Engineering and Development at the Manned Spacecraft Center, was not satisfied with the purely lifting re-entry method (as proposed for the cancelled X-20 "Dyna-Soar").
[127] He designed a space shuttle which operated as a blunt body by entering the atmosphere at an extremely high angle of attack of 40°[128] with the underside facing the direction of flight, creating a large shock wave that would deflect most of the heat around the vehicle instead of into it.
Fueled partly by the Cold War, the 1960s became the decade of rapid development of rocket technology particularly in the Soviet Union (Vostok, Soyuz, Proton) and in the United States (e.g. the X-15[132] and X-20 Dyna-Soar[133] aircraft).
In America, the crewed spaceflight programs, Project Mercury, Project Gemini, and later the Apollo program, culminated in 1969 with the first crewed landing on the Moon using the Saturn V, causing the New York Times to retract its earlier 1920 editorial implying that spaceflight couldn't work: Further investigation and experimentation have confirmed the findings of Isaac Newton in the 17th century and it is now definitely established that a rocket can function in a vacuum as well as in an atmosphere.