Shapiro polynomials

[1] In signal processing, the Shapiro polynomials have good autocorrelation properties and their values on the unit circle are small.

The first Shapiro Pn(z) is the partial sum of order 2n − 1 (where n = 0, 1, 2, ...) of the power series The Golay–Rudin–Shapiro sequence {an} has a fractal-like structure – for example, an = a2n – which implies that the subsequence (a0, a2, a4, ...) replicates the original sequence {an}.

This in turn leads to remarkable functional equations satisfied by f(z).

The second or complementary Shapiro polynomials Qn(z) may be defined in terms of this sequence, or by the relation Qn(z) = (-1)nz2n-1Pn(-1/z), or by the recursions The sequence of complementary polynomials Qn corresponding to the Pn is uniquely characterized by the following properties: The most interesting property of the {Pn} is that the absolute value of Pn(z) is bounded on the unit circle by the square root of 2(n + 1), which is on the order of the L2 norm of Pn.

Polynomials with coefficients from the set {−1, 1} whose maximum modulus on the unit circle is close to their mean modulus are useful for various applications in communication theory (e.g., antenna design and data compression).

Zeroes of the polynomial of degree 255